336 research outputs found

    Hydrogenation reactions of carbon on Earth: linking methane, margarine, and life

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McGlynn, S. E., Glass, J. B., Johnson-Finn, K., Klein, F., Sanden, S. A., Schrenk, M. O., Ueno, Y., & Vitale-Brovarone, A. Hydrogenation reactions of carbon on Earth: linking methane, margarine, and life. American Mineralogist, 105(5), (2020): 599-608, doi:10.2138/am-2020-6928CCBYNCND.Hydrogenation reactions are a major route of electron and proton flow on Earth. Interfacing geology and organic chemistry, hydrogenations occupy pivotal points in the Earth’s global geochemical cycles. Some examples of hydrogenation reactions on Earth today include the production and consumption of methane in both abiotic and biotic reactions, the reduction of protons in hydrothermal settings, and the biological synthesis and degradation of fatty acids. Hydrogenation reactions were likely important for prebiotic chemistry on the early Earth, and today serve as one of the fundamental reaction classes that enable cellular life to construct biomolecules. An understanding and awareness of hydrogenation reactions is helpful for comprehending the larger web of molecular and material inter-conversions on our planet. In this brief review we detail some important hydrogenation and dehydrogenation reactions as they relate to geology, biology, industry, and atmospheric chemistry. Such reactions have implications ranging from the suite of reactions on early Earth to industrial applications like the production of hydrocarbon fuel.S.E.M. is supported by NSF Award 1724300 and JSPS KAKENHI Grant JP18H01325. A.V.B. is supported by ANR T-ERC, CNRS INSU-SYSTER, and Rita Levi Montalcini by MIUR. J.B.G. is supported by NASA Exobiology Grant NNX14AJ87G and 80NSSC19K0477. F.K. is supported by NSF-OCE award 1634032 and 1427274. M.O.S. is supported by the NASA Astrobiology Institute Rock-Powered Life Grant NNA15BB02A

    E6,7,8 Magnetized Extra Dimensional Models

    Full text link
    We study 10D super Yang-Mills theory with the gauge groups E6E_6, E7E_7 and E8E_8. We consider the torus/orbifold compacfitication with magnetic fluxes and Wilson lines. They lead to 4D interesting models with three families of quarks and leptons, whose profiles in extra dimensions are quasi-localized because of magnetic fluxes.Comment: 17 pages, 1 figur

    Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases

    Get PDF
    Aims The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. Methods and Results We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands. Conclusions Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD. Translational Perspective Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD

    Direct competition results from strong competiton for limited resource

    Get PDF
    We study a model of competition for resource through a chemostat-type model where species consume the common resource that is constantly supplied. We assume that the species and resources are characterized by a continuous trait. As already proved, this model, although more complicated than the usual Lotka-Volterra direct competition model, describes competitive interactions leading to concentrated distributions of species in continuous trait space. Here we assume a very fast dynamics for the supply of the resource and a fast dynamics for death and uptake rates. In this regime we show that factors that are independent of the resource competition become as important as the competition efficiency and that the direct competition model is a good approximation of the chemostat. Assuming these two timescales allows us to establish a mathematically rigorous proof showing that our resource-competition model with continuous traits converges to a direct competition model. We also show that the two timescales assumption is required to mathematically justify the corresponding classic result on a model consisting of only finite number of species and resources (MacArthur, R. Theor. Popul. Biol. 1970:1, 1-11). This is performed through asymptotic analysis, introducing different scales for the resource renewal rate and the uptake rate. The mathematical difficulty relies in a possible initial layer for the resource dynamics. The chemostat model comes with a global convex Lyapunov functional. We show that the particular form of the competition kernel derived from the uptake kernel, satisfies a positivity property which is known to be necessary for the direct competition model to enjoy the related Lyapunov functional

    An international intercomparison of stable carbon isotope composition measurements of dissolved inorganic carbon in seawater

    Get PDF
    We report results of an intercomparison of stable carbon isotope ratio measurements in seawater dissolved inorganic carbon (δ 13C‐DIC) which involved 16 participating laboratories from various parts of the world. The intercomparison involved distribution of samples of a Certified Reference Material for seawater DIC concentration and alkalinity and a preserved sample of deep seawater collected at 4000 m in the northeastern Atlantic Ocean. The between‐lab standard deviation of reported uncorrected values measured with diverse analytical, detection, and calibration methods was 0.11‰ (1σ ). The multi‐lab average δ 13C‐DIC value reported for the deep seawater sample was consistent within 0.1‰ with historical measured values for the same water mass. Application of a correction procedure based on a consensus value for the distributed reference material, improved the between‐lab standard deviation to 0.06‰. The magnitude of the corrections were similar to those used to correct independent data sets using crossover comparisons, where deep water analyses from different cruises are compared at nearby locations. Our results demonstrate that the accuracy/uncertainty target proposed by the Global Ocean Observing System (±0.05‰) is attainable, but only if an aqueous phase reference material for δ 13C‐DIC is made available and used by the measurement community. Our results imply that existing Certified Reference Materials used for seawater DIC and alkalinity quality control are suitable for this purpose, if a “Certified” or internally consistent “consensus” value for δ 13C‐DIC can be assigned to various batches.publishedVersio

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Clinical experience with the Bicarbon heart valve prosthesis

    Get PDF
    BACGROUND: We have previously reported mid-term results of a study, which ended in January 2000, on the Bicarbon valve. The study concluded that the valve showed excellent clinical results, associated with a low incidence of valve-related complications. In the present study, the same patients were prospectively followed for an additional 5 years. METHODS: Forty-four patients had aortic valve replacement (AVR), 48 had mitral valve replacement (MVR), and 13 had both aortic and mitral valve replacement (DVR). The mean age of the 105 patients was 61.2 ± 11.3 years. The mean follow-up was 6.1 ± 1.9 years with a cumulative follow-up of 616 patient-years. RESULTS: There were 5 early deaths (4.7%: 4 in the AVR group and 1 in the MVR group) and 21 late deaths (3.4%/patient-year: 5 valve related deaths and 16 valve unrelated deaths). Survival at 8 years was 75.2 ± 7.0% in the AVR group, 76.6 ± 6.2% in the MVR group, and 55.4 ± 16.1% in the DVR group. The linearized incidence of thrombo-embolic complications, hemorrhagic complications, and paravalvular leaks in all patients was 0.65 ± 1.48%, 0.81 ± 1.69%, and 0.16 ± 0.54%/patient-year respectively. No other complications were observed. CONCLUSION: The Bicarbon prosthetic heart valve has shown excellent long-term clinical results, associated with a low incidence of valve-related complications

    The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>5-Aminolevulinic acid (ALA) is a precursor of heme that is fundamentally important in aerobic energy metabolism. Among the enzymes involved in aerobic energy metabolism, cytochrome <it>c </it>oxidase (COX) is crucial. In this study, the effect of ALA on cytochrome <it>c </it>oxidase activity was measured.</p> <p>Findings</p> <p>c57BL/6N species of mice were administered ALA orally for 15 weeks. After ALA administration, mice were sacrificed and livers were obtained. COX activity in mitochondria from ALA-administered mouse livers was 1.5-fold higher than that in mitochondria from PBS-administered mouse livers (P < 0.05). Furthermore, ATP levels in ALA-administered mouse livers were much higher than those in PBS-administered mouse livers. These data suggest that oral administration of ALA promotes aerobic energy metabolism, especially COX activity.</p> <p>Conclusions</p> <p>This is the first report of a drug that functions in aerobic energy metabolism directly. Since COX activity is decreased in various diseases and aging, the pharmacological effects of ALA will be expanding.</p

    Revisiting superparticle spectra in superconformal flavor models

    Full text link
    We study superparticle spectra in the superconformal flavor scenario with non-universal gaugino masses. The non-universality of gaugino masses can lead to the wino-like or higgsino-like neutralino LSP. Furthermore, it is shown that the parameter space for the higgsino-like LSP includes the region where the fine-tuning problem can be improved. The degeneracy of soft scalar masses squared does not drastically change by taking ratios of gaugino masses of order one. The degeneracy of scalar masses for squarks and left-handed sleptons would be good to avoid the FCNC problem but that of right-handed slepton masses is weak. However, the overall size of right-handed slepton masses become larger when the bino becomes heavier. It is also pointed out that such region can be realized, and thus, that would be favorable to avoid the FCNC problem for soft scalar masses as well as A-terms.Comment: 18 pages, 12 figures, reference added, minor correction
    corecore