47 research outputs found

    Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures

    Get PDF
    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge2Sb2Te5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices. We also show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material GST. We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ~ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials

    Get PDF
    We show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material Ge_2Sb_2Te_5 (GST). We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ∼ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures

    Get PDF
    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge2Sb2Te5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices. We also show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material GST. We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ~ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotic cells, there are two sub-pathways of nucleotide excision repair (NER), the global genome (gg) NER and the transcription-coupled repair (TCR). TCR can preferentially remove the bulky DNA lesions located at the transcribed strand of a transcriptional active gene more rapidly than those at the untranscribed strand or overall genomic DNA. This strand-specific repair in a suitable restriction fragment is usually determined by alkaline gel electrophoresis followed by Southern blotting transfer and hybridization with an indirect end-labeled single-stranded probe. Here we describe a new method of TCR assay based on strand-specific-PCR (SS-PCR). Using this method, we have investigated the role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related protein kinases (PIKK) family, in the TCR pathway of UV-induced DNA damage.</p> <p>Results</p> <p>Although depletion of DNA-PKcs sensitized HeLa cells to UV radiation, it did not affect the ggNER efficiency of UV-induced cyclobutane pyrimidine dimers (CPD) damage. We postulated that DNA-PKcs may involve in the TCR process. To test this hypothesis, we have firstly developed a novel method of TCR assay based on the strand-specific PCR technology with a set of smart primers, which allows the strand-specific amplification of a restricted gene fragment of UV radiation-damaged genomic DNA in mammalian cells. Using this new method, we confirmed that siRNA-mediated downregulation of Cockayne syndrome B resulted in a deficiency of TCR of the UV-damaged dihydrofolate reductase (<it>DHFR</it>) gene. In addition, DMSO-induced silencing of the c-myc gene led to a decreased TCR efficiency of UV radiation-damaged c-myc gene in HL60 cells. On the basis of the above methodology verification, we found that the depletion of DNA-PKcs mediated by siRNA significantly decreased the TCR capacity of repairing the UV-induced CPDs damage in <it>DHFR </it>gene in HeLa cells, indicating that DNA-PKcs may also be involved in the TCR pathway of DNA damage repair. By means of immunoprecipitation and MALDI-TOF-Mass spectrometric analysis, we have revealed the interaction of DNA-PKcs and cyclin T2, which is a subunit of the human transcription elongation factor (P-TEFb). While the P-TEFb complex can phosphorylate the serine 2 of the carboxyl-terminal domain (CTD) of RNA polymerase II and promote transcription elongation.</p> <p>Conclusion</p> <p>A new method of TCR assay was developed based the strand-specific-PCR (SS-PCR). Our data suggest that DNA-PKcs plays a role in the TCR pathway of UV-damaged DNA. One possible mechanistic hypothesis is that DNA-PKcs may function through associating with CyclinT2/CDK9 (P-TEFb) to modulate the activity of RNA Pol II, which has already been identified as a key molecule recognizing and initializing TCR.</p

    Biological and genomic analysis of a symbiotic nitrogen fixation defective mutant in Medicago truncatula

    Get PDF
    Medicago truncatula has been selected as one of the model legume species for gene functional studies. To elucidate the functions of the very large number of genes present in plant genomes, genetic mutant resources are very useful and necessary tools. Fast Neutron (FN) mutagenesis is effective in inducing deletion mutations in genomes of diverse species. Through this method, we have generated a large mutant resource in M. truncatula. This mutant resources have been used to screen for different mutant using a forward genetics methods. We have isolated and identified a large amount of symbiotic nitrogen fixation (SNF) deficiency mutants. Here, we describe the detail procedures that are being used to characterize symbiotic mutants in M. truncatula. In recent years, whole genome sequencing has been used to speed up and scale up the deletion identification in the mutant. Using this method, we have successfully isolated a SNF defective mutant FN007 and identified that it has a large segment deletion on chromosome 3. The causal deletion in the mutant was confirmed by tail PCR amplication and sequencing. Our results illustrate the utility of whole genome sequencing analysis in the characterization of FN induced deletion mutants for gene discovery and functional studies in the M. truncatula. It is expected to improve our understanding of molecular mechanisms underlying symbiotic nitrogen fixation in legume plants to a great extent

    Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields

    Get PDF
    Optical techniques offer a wide variety of applications as light-matter interactions provide extremely sensitive mechanisms to probe or treat target media. Most of these implementations rely on the usage of ballistic or quasi-ballistic photons to achieve high spatial resolution. However, the inherent scattering nature of light in biological tissues or tissue-like scattering media constitutes a critical obstacle that has restricted the penetration depth of non-scattered photons and hence limited the implementation of most optical techniques for wider applications. In addition, the components of an optical system are usually designed and manufactured for a fixed function or performance. Recent advances in wavefront shaping have demonstrated that scattering- or component-induced phase distortions can be compensated by optimizing the wavefront of the input light pattern through iteration or by conjugating the transmission matrix of the scattering medium. This offers unprecedented opportunities in many applications to achieve controllable optical delivery or detection at depths or dynamically configurable functionalities by using scattering media to substitute conventional optical components. In this article, the recent progress of wavefront shaping in multidisciplinary fields is reviewed, from optical focusing and imaging with scattering media, functionalized devices, modulation of mode coupling, and nonlinearity in multimode fiber to multimode fiber-based applications. Apart from insights into the underlying principles and recent advances in wavefront shaping implementations, practical limitations and roadmap for future development are discussed in depth. Looking back and looking forward, it is believed that wavefront shaping holds a bright future that will open new avenues for noninvasive or minimally invasive optical interactions and arbitrary control inside deep tissues. The high degree of freedom with multiple scattering will also provide unprecedented opportunities to develop novel optical devices based on a single scattering medium (generic or customized) that can outperform traditional optical components

    Multifaceted link between cancer and inflammation

    Get PDF
    10.1042/BSR20100136Bioscience Reports3211-15BRPT

    Data.xlsx

    No full text
    <p>The<b> CCPI</b> and <b>CMAD</b> data from 2012-2015 are collected.</p

    NDH‐1L with a truncated NdhM subunit is unstable under stress conditions in cyanobacteria

    No full text
    Abstract Cyanobacterial NdhM, an oxygenic photosynthesis‐specific NDH‐1 subunit, has been found to be essential for the formation of a large complex of NDH‐1 (NDH‐1L). The cryo‐electron microscopic (cryo‐EM) structure of NdhM from Thermosynechococcus elongatus showed that the N‐terminus of NdhM contains three β‐sheets, while two α‐helixes are present in the middle and C‐terminal part of NdhM. Here, we obtained a mutant of the unicellular cyanobacterium Synechocystis 6803 expressing a C‐terminal truncated NdhM subunit designated NdhMΔC. Accumulation and activity of NDH‐1 were not affected in NdhMΔC under normal growth conditions. However, the NDH‐1 complex with truncated NdhM is unstable under stress. Immunoblot analyses showed that the assembly process of the cyanobacterial NDH‐1L hydrophilic arm was not affected in the NdhMΔC mutant even under high temperature. Thus, our results indicate that NdhM can bind to the NDH‐1 complex without its C‐terminal α‐helix, but the interaction is weakened. NDH‐1L with truncated NdhM is more prone to dissociation, and this is particularly evident under stress conditions

    Efficacy of Pulsed Radiofrequency on Cervical 2-3 Posterior Medial Branches in Treating Chronic Migraine: A Randomized, Controlled, and Double-Blind Trial

    Get PDF
    Objective. The aim of this study was to examine the efficacy and safety of pulsed radiofrequency (PRF) in the treatment of chronic migraine (CM) on cervical 2-3 posterior medial branches. Methods. This randomized, double-blind, and controlled clinical trial included 40 subjects with CM, who were randomly divided into two groups: treatment (treated by PRF) and sham (treated by sham treatment). Pain intensity, headache duration (days), the Migraine Disability Assessment Questionnaire (MIDAS), and aspirin dose taken by patients were evaluated at 1, 2, and 6 months after the intervention. Side effects were observed from the time of treatment and throughout the follow-up period. Results. During the follow-up, pain intensity, headache duration (days), disability score, and the analgesic dose were significantly improved in the treatment group compared to the sham group (P<0.001) and the baseline (P<0.001) at all measured time points after intervention. No serious complications were reported. Conclusion. PRF on the cervical 2-3 posterior medial branches could provide satisfactory efficacy in the treatment of CM without obvious adverse effects
    corecore