224 research outputs found

    Silencing of two insulin receptor genes disrupts nymph-adult transition of alate brown citrus aphid

    Get PDF
    Insulin receptors play key roles in growth, development, and polymorphism in insects. Here, we report two insulin receptor genes (AcInR1 and AcInR2) from the brown citrus aphid, Aphis (Toxoptera) citricidus. Transcriptional analyses showed that AcInR1 increased during the nymph-adult transition in alate aphids, while AcInR2 had the highest expression level in second instar nymphs. AcInR1 is important in aphid development from fourth instar nymphs to adults as verified by dsRNA feeding mediated RNAi. The silencing of AcInR1 or/and AcInR2 produced a variety of phenotypes including adults with normal wings, malformed wings, under-developed wings, and aphids failing to develop beyond the nymphal stages. Silencing of AcInR1 or AcInR2 alone, and co-silencing of both genes, resulted in 73% or 60%, and 87% of aphids with problems in the transition from nymph to normal adult. The co-silencing of AcInR1 and AcInR2 resulted in 62% dead nymphs, but no mortality occurred by silencing of AcInR1 or AcInR2 alone. Phenotypes of adults in the dsInR1 and dsInR2 were similar. The results demonstrate that AcInR1 and AcInR2 are essential for successful nymph-adult transition in alate aphids and show that RNAi methods may be useful for the management of this pest

    Optimal Codon Identities in Bacteria: Implications from the Conflicting Results of Two Different Methods

    Get PDF
    A correlation method was recently adopted to identify selection-favored ‘optimal’ codons from 675 bacterial genomes. Surprisingly, the identities of these optimal codons were found to track the bacterial GC content, leading to a conclusion that selection would generally shape the codon usages to the same direction as the overall mutation does. Raising several concerns, here we report a thorough comparative study on 203 well-selected bacterial species, which strongly suggest that the previous conclusion is likely an illusion. Firstly, the previous study did not preclude species that are suffering weak or no selection pressures on their codon usages. For these species, as showed in this study, the optimal codon identities are prone to be incorrect and follow GC content. Secondly, the previous study only adopted the correlation method, without considering another method to test the reliability of inferred optimal codons. Actually by definition, optimal codons can also be identified by simply comparing codon usages between high- and low-expression genes. After using both methods to identify optimal codons for the selected species, we obtained highly conflicting results, suggesting at least one method is misleading. Further we found a critical problem of correlation method at the step of calculating gene bias level. Due to a failure of accurately defining the background mutation, the problem would result in wrong optimal codon identities. In other words, partial mutational effects on codon choices were mistakenly regarded as selective influences, leading to incorrect and biased optimal codon identities. Finally, considering the translational dynamics, optimal codons identified by comparison method can be well-explained by tRNA compositions, whereas optimal codons identified by correlation method can not be. For all above reasons, we conclude that real optimal codons actually do not track the genomic GC content, and correlation method is misleading in identifying optimal codons and better be avoided

    Lysine-5 Acetylation Negatively Regulates Lactate Dehydrogenase A and Is Decreased in Pancreatic Cancer

    Get PDF
    SummaryTumor cells commonly have increased glucose uptake and lactate accumulation. Lactate is produced from pyruvate by lactate dehydrogenase A (LDH-A), which is frequently overexpressed in tumor cells and is important for cell growth. Elevated transcription by c-Myc or HIF1α may contribute to increased LDH-A in some cancer types. Here, we show that LDH-A is acetylated at lysine 5 (K5) and that this acetylation inhibits LDH-A activity. Furthermore, the K5-acetylated LDH-A is recognized by the HSC70 chaperone and delivered to lysosomes for degradation. Replacement of endogenous LDH-A with an acetylation mimetic mutant decreases cell proliferation and migration. Importantly, K5 acetylation of LDH-A is reduced in human pancreatic cancers. Our study reveals a mechanism of LDH-A upregulation in pancreatic cancers

    Identifikasi Dan Problematika Penggunaan Lahan Lingkungan Bantaran Sungai Terhadap Peraturan Pemerintah Dan Daerah Di Kota Banjarmasin

    Full text link
    AIMS:The role of adoptive immunotherapy (AIT) for patients with hepatocellular carcinoma (HCC) who have received curative therapy is still not well illustrated. This timely meta-analysis aims to update the current evidence on efficacy and safety of AIT for patients with HCC who have received curative therapy. METHODS:We searched PubMed, EMBASE, Scopus and the Cochrane Library Through January 2017 for relevant studies. Mortality and tumor recurrence were compared between patients with or without adjuvant AIT. The meta-analysis was performed using Review Manager 5.3. RESULTS:Eight studies involving 1861 patients met the eligibility criteria and were meta-analyzed. Adjuvant AIT was associated with significantly lower mortality at 1 year (RR 0.64, 95%CI 0.52-0.79), 3 years (RR 0.73, 95%CI 0.65-0.81) and 5 years (RR 0.86, 95%CI 0.79-0.94). Similarly, adjuvant AIT was associated with significantly lower recurrence rate than curative therapies alone at 1 year (RR 0.64, 95%CI 0.49-0.82), 3 years (RR 0.85, 95%CI 0.79-0.91) and 5 years (RR 0.90, 95%CI 0.85-0.95). Short-term outcomes were confirmed in sensitivity analyses based on randomized trials or choice of random- or fixed-effect meta-analysis model. None of the included patients experienced grade 4 adverse events. CONCLUSIONS:This timely meta-analysis confirms the evidence that adjuvant AIT for patients with HCC after curative treatment lowers risk of mortality and tumor recurrence

    The N-terminal Phosphodegron Targets TAZ/WWTR1 Protein for SCF β-TrCP -dependent Degradation in Response to Phosphatidylinositol 3-Kinase Inhibition

    Get PDF
    The Hippo tumor suppressor pathway plays a major role in development and organ size control, and its dysregulation contributes to tumorigenesis. TAZ (transcriptional co-activator with PDZ-binding motif; also known as WWTR1) is a transcription co-activator acting downstream of the Hippo pathway, and increased TAZ protein levels have been associated with human cancers, such as breast cancer. Previous studies have shown that TAZ is inhibited by large tumor suppressor (LATS)-dependent phosphorylation, leading to cytoplasmic retention and ubiquitin-dependent degradation. The LATS kinase, a core component of the Hippo pathway, phosphorylates the C-terminal phosphodegron in TAZ to promote its degradation. In this study, we have found that the N-terminal phosphodegron of TAZ also plays a role in TAZ protein level regulation, particularly in response to different status of cellular PI3K signaling. GSK3, which can be inhibited by high PI3K via AKT-dependent inhibitory phosphorylation, phosphorylates the N-terminal phosphodegron in TAZ, and the phosphorylated TAZ binds to β-TrCP subunit of the SCFβ-TrCP E3 ubiquitin ligase, thereby leading to TAZ ubiquitylation and degradation. We observed that the TAZ protein level is elevated in tumor cells with high PI3K signaling, such as in PTEN mutant cancer cells. This study provides a novel mechanism of TAZ regulation and suggests a role of TAZ in modulating tissue growth and tumor development in response to PI3K signaling

    Targeted polyubiquitylation of RASSF1C by the Mule and SCF β-TrCP ligases in response to DNA damage

    Get PDF
    RASSF1A [Ras association (RalGDS/AF-6) domain family member 1A] and RASSF1C are two ubiquitously expressed isoforms of the RASSF1 gene. The promoter of RASSF1A is frequently hypermethylated, resulting in inactivation in various human cancers. RASSF1A is implicated in the regulation of apoptosis, microtubule stability and cell cycle arrest. However, little is known about the regulation and function of RASSF1C. In the present study we show that exogenously expressed RASSF1C is a very unstable protein that is highly polyubiquitylated and degraded via the proteasome. Furthermore, RASSF1C degradation is enhanced when cells are exposed to stress signals, such as UV irradiation. Mule, a HECT (homologous with E6-associated protein C-terminus) family E3 ligase, but not SCFβ-TrCP [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box and β-TrCP is β-bransducin repeat-containing protein] or CUL4 (cullin 4)-DDB1 (damage-specific DNA-binding protein 1), is the E3 ligase for RASSF1C under normal conditions, whereas both Mule and SCFβ-TrCP target RASSF1C degradation in response to UV irradiation. GSK3 (glycogen synthase kinase 3) phosphorylates RASSF1C to promote RASSF1C degradation subsequently, which is negatively regulated by the PI3K (phosphoinositide 3-kinase)/Akt pathway. Thus the present study reveals a novel regulation of RASSF1C and the potentially important role of RASSF1C in DNA damage responses

    Acetylation Stabilizes ATP-Citrate Lyase to Promote Lipid Biosynthesis and Tumor Growth

    Get PDF
    Increased fatty acid synthesis is required to meet the demand for membrane expansion of rapidly growing cells. ATP-citrate lyase (ACLY) is upregulated or activated in several types of cancer, and inhibition of ACLY arrests proliferation of cancer cells. Here we show that ACLY is acetylated at lysine residues 540, 546, and 554 (3K). Acetylation at these three lysine residues is stimulated by P300/calcium-binding protein (CBP)-associated factor (PCAF) acetyltransferase under high glucose and increases ACLY stability by blocking its ubiquitylation and degradation. Conversely, the protein deacetylase sirtuin 2 (SIRT2) deacetylates and destabilizes ACLY. Substitution of 3K abolishes ACLY ubiquitylation and promotes de novo lipid synthesis, cell proliferation, and tumor growth. Importantly, 3K acetylation of ACLY is increased in human lung cancers. Our study reveals a crosstalk between acetylation and ubiquitylation by competing for the same lysine residues in the regulation of fatty acid synthesis and cell growth in response to glucose

    High Prevalence and Genetic Heterogeneity of Rodent-Borne Bartonella Species on Heixiazi Island, China

    Get PDF
    We performed genetic analysis of Bartonella isolates from rodent populations from Heixiazi Island in northeast China. Animals were captured at four sites representing grassland and brushwood habitats in 2011 and examined for the prevalence and genetic diversity of Bartonella species, their relationship to their hosts, and geographic distribution. A high prevalence (57.7%) and a high diversity (14 unique genotypes which belonged to 8 clades) of Bartonella spp. were detected from 71 rodents comprising 5 species and 4 genera from 3 rodent families. Forty-one Bartonella isolates were recovered and identified, including B. taylorii, B. japonica, B. coopersplainsensis, B. grahamii, B. washoensis subsp. cynomysii, B. doshiae, and two novel Bartonella species, by sequencing of four genes (gltA, the 16S rRNA gene, ftsZ, and rpoB). The isolates of B. taylorii and B. grahamii were the most prevalent and exhibited genetic difference from isolates identified elsewhere. Several isolates clustered with strains from Japan and far-eastern Russia; strains isolated from the same host typically were found within the same cluster. Species descriptions are provided for Bartonella heixiaziensis sp. nov. and B. fuyuanensis sp. nov

    Sweroside Alleviated Aconitine-Induced Cardiac Toxicity in H9c2 Cardiomyoblast Cell Line

    Get PDF
    Aconitine is the main bioactive ingredient of Aconitum plants, which are well-known botanical herbs in China. Aconitine is also notorious for its high cardiotoxicity, as it can induce life-threatening ventricular arrhythmias. Unfortunately, there are few effective antidotes to aconitine toxicity. This study aimed to evaluate the potent protective effects of the ingredients from V. baillonii on aconitine toxicity on H9c2 cell line. Cell viability was assessed by methylthiazoltetrazolium bromide (MTT). Intracellular Ca2+ concentration alteration and reactive oxygen species (ROS) generation were observed by confocal microscopy and flow cytometry, respectively. Cellular oxidative stress was analyzed by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) levels. Mitochondrial membrane potential (ΔΨ) was determined using JC-1 kit. RT-PCR and Hoechst staining techniques were conducted to determine the levels of autophagy/apoptosis. The mRNA levels of dihydropyridine receptor (DHPR), ryanodine receptors (RyR2) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) were measured by RT-PCR. We screened six components from V. baillonii, among which, sweroside exhibited the strongest protective effects on aconitine-induced cardiac toxicity. Sweroside suppressed the aconitine-induced mRNA expressions of NaV1.5 (encoded by SCN5A), RyR2 and DHPR, and reversed the aconitine-induced decrease in mRNA level of SERCA, thus preventing the aconitine-induced persistent intracellular Ca2+ accumulation and avoiding intracellular Ca2+ overload. We further found that sweroside restabilized the aconitine-disrupted mitochondrial membrane potential (ΔΨ) and reversed the aconitine-induced increase in the mRNA levels of cell autophagy-related factors (Beclin-1, Caspase-3, and LC3- II) in H9c2 cells. In the whole-animal experiments, we observed that sweroside (50 mg/kg) alleviated effectively aconitine-induced arrhythmias by analysis of electrocardiogram (ECG) recording in rats. Our results demonstrate that sweroside may protect cardiomyocytes from aconitine toxicity by maintaining intracellular Ca2+ homeostasis, restabilizing mitochondrial membrane potential (ΔΨ) and avoiding cell autophagy/apoptosis

    Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase

    Get PDF
    Glycolytic enzyme phosphoglycerate mutase (PGAM) plays an important role in coordinating energy production with generation of reducing power and the biosynthesis of nucleotide precursors and amino acids. Inhibition of PGAM by small RNAi or small molecule attenuates cell proliferation and tumor growth. PGAM activity is commonly upregulated in tumor cells, but how PGAM activity is regulated in vivo remains poorly understood. Here we report that PGAM is acetylated at lysine 100 (K100), an active site residue that is invariably conserved from bacteria, to yeast, plant, and mammals. K100 acetylation is detected in fly, mouse, and human cells and in multiple tissues and decreases PGAM2 activity. The cytosolic protein deacetylase sirtuin 2 (SIRT2) deacetylates and activates PGAM2. Increased levels of reactive oxygen species stimulate PGAM2 deacetylation and activity by promoting its interaction with SIRT2. Substitution of endogenous PGAM2 with an acetylation mimetic mutant K100Q reduces cellular NADPH production and inhibits cell proliferation and tumor growth. These results reveal a mechanism of PGAM2 regulation and NADPH homeostasis in response to oxidative stress that impacts cell proliferation and tumor growth
    • …
    corecore