99 research outputs found

    Trends in Surgical and Beauty Masks for a Cleaner Environment

    Get PDF
    The surgical face mask (SFM) is a sheet medical device covering the mouth, nose and chin to protect the medical staff from the spread of respiratory droplets produced by the infective coughing or sneezing of hospitalized patients. On the other hand the beauty face mask (BFM) has been made by the same sheet but with a different aim—to protect the skin from pollution, acting as a hydrating and rejuvenation agent. Currently, both masks are made principally by non-biodegradable tissues, utilized to avoid the increasing great pollution invading our planet. Due to the diffusion of the current COVID-19 infection rate and the increasing consumption of skin care and beauty products, the waste of these masks, made principally by petrol-derived polymers, is creating further intolerable waste-invaded land and oceans. After an introduction to the aims, differences and market of the various masks, their productive means and ingredients are reported. These news are believed necessary to give the reader the working knowledge of these products, in the context of the bioeconomy, to better understand the innovative tissues proposed and realized by the biobased and biodegradable polymers. Thus, the possibility of producing biodegradable SFMs and BFMs, characterized for their effective antimicrobial and skin repairing activities or hydrating and antiaging activity, respectively. These innovative smart and biodegradable masks are requested from the majority of consumers oriented towards a future green environment. Giving this new sense of direction to their production and consumption, it will be possible to reduce the current waste, ranging worldwide at about 2 billion tons per year

    Mechanical Treatment of Raw Waste Lumber an Effective Way to Preserve the Ecology and Resources

    Get PDF
    Alternative process flowsheet machining of the machining of raw waste lumber were analysed, and it was implemented in a real machine model based on the chosen scheme. The forming process of the treated surface of the stock material was examined, and consequently the mathematical models of the geometric errors in terms of independent factors of the profile milling process were defined. Based on these models is possible to construct a treatment process of the raw waste lumber with minimal errors on the surfaces which were treated. The manufacturing of products from raw waste lumber allows to reduce the volume of deforestation and helps to preserve the ecology and economize the material resources

    Coherent population trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    Get PDF
    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D1 line of 87Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to 25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser field components. Our theoretical predictions are in good agreement with the experimental results.Comment: 8 pages, 7 figure

    An elementary approach to toy models for D. H. Lehmer's conjecture

    Full text link
    In 1947, Lehmer conjectured that the Ramanujan's tau function τ(m)\tau (m) never vanishes for all positive integers mm, where τ(m)\tau (m) is the mm-th Fourier coefficient of the cusp form Δ24\Delta_{24} of weight 12. The theory of spherical tt-design is closely related to Lehmer's conjecture because it is shown, by Venkov, de la Harpe, and Pache, that τ(m)=0\tau (m)=0 is equivalent to the fact that the shell of norm 2m2m of the E8E_{8}-lattice is a spherical 8-design. So, Lehmer's conjecture is reformulated in terms of spherical tt-design. Lehmer's conjecture is difficult to prove, and still remains open. However, Bannai-Miezaki showed that none of the nonempty shells of the integer lattice \ZZ^2 in \RR^2 is a spherical 4-design, and that none of the nonempty shells of the hexagonal lattice A2A_2 is a spherical 6-design. Moreover, none of the nonempty shells of the integer lattices associated to the algebraic integers of imaginary quadratic fields whose class number is either 1 or 2, except for \QQ(\sqrt{-1}) and \QQ(\sqrt{-3}) is a spherical 2-design. In the proof, the theory of modular forms played an important role. Recently, Yudin found an elementary proof for the case of \ZZ^{2}-lattice which does not use the theory of modular forms but uses the recent results of Calcut. In this paper, we give the elementary (i.e., modular form free) proof and discuss the relation between Calcut's results and the theory of imaginary quadratic fields.Comment: 18 page

    Chitin and Lignin: Old Polymers and New Bio-Tissue- Carriers

    Get PDF
    Worldwide consumers are nowadays much more focusing on their wealth and appearance, having increased their worry caused from the pollution, plastic wastes and the earth' disasters further increased for the COVID-19 pandemic. This trend has created an heightened demand for products which, formulated with natural and functional ingredients and carried by sustainable delivery systems, should be produced and packed with biodegradable compounds. The paper suggests to formulate innovative cosmetic and medical products based on the use of carriers made by biodegradable polysaccharide-tissues embedded by micro-nano particles of chitin nano fibril-nano lignin complexes, encapsulating different active ingredients. Thus, data on chitin, lignin and their complexes are reported and discussed, focusing the attention on their possible use to make innovative products, characterized for their effectiveness, safeness, and biodegradability

    Effect of dopants on laser-induced damage threshold of ZnGeP2

    Get PDF
    The effect of doping Mg, Se, and Ca by diffusion into ZnGeP2 on the optical damage threshold at a wavelength of 2.1 μm has been studied. It has been shown that diffusion-doping with Mg and Se leads to an increase in the laser-induced damage threshold (LIDT) of a single crystal (monocrystal), ZnGeP2; upon annealing at a temperature of 750 °C, the damage threshold of samples doped with Mg and Se increases by 31% and 21% from 2.2 ± 0.1 J/cm2 to 2.9 ± 0.1 and 2.7 ± 0.1 J/cm2, respectively. When ZnGeP2 is doped with Ca, the opposite trend is observed. It has been suggested that the changes in the LIDT depending on the introduced impurity by diffusion can be explained by the creation of additional energy dissipation channels due to the processes of radiative and fast non-radiative relaxation through impurity energy levels, which further requires experimental confirmation

    Weathering of Antibacterial Melt-Spun Polyfilaments Modified by Pine Rosin

    Get PDF
    For many antibacterial polymer fibres, especially for those with natural functional additives, the antibacterial response might not last over time. Moreover, the mechanical performance of polymeric fibres degrades significantly during the intended operation, such as usage in textile and industrial filter applications. The degradation process and overall ageing can lead to emitted volatile organic compounds (VOCs). This work focused on the usage of pine rosin as natural antibacterial chemical and analysed the weathering of melt-spun polyethylene (PE) and poly lactic acid (PLA) polyfilaments. A selected copolymer surfactant, as an additional chemical, was studied to better integrate rosin with the molecular structure of the plastics. The results reveal that a high 20 w-% of rosin content can be obtained by surfactant addition in non-oriented PE and PLA melt-spun polyfilaments. According to the VOC analysis, interestingly, the total emissions from the melt-spun PE and PLA fibres were lower for rosin-modified (10 w-%) fibres and when analysed below 60 ℃. The PE fibres of the polyfilaments were found to be clearly more durable in terms of the entire weathering study, i.e., five weeks of ultraviolet radiation, thermal ageing and standard washing. The antibacterial response against Gram-positive Staphylococcus aureus by the rosin-containing fibres was determined to be at the same level (decrease of 3–5 logs cfu/mL) as when using 1.0 w-% of commercial silver-containing antimicrobial. For the PE polyfilaments with rosin (10 w-%), full killing response (decrease of 3–5 logs cfu/mL) remained after four weeks of accelerated ageing at 60 ℃

    Multispectral anti-reflection coatings based on YbF3/ZnS materials on ZnGeP2 substrate by the IBS method for Mid-IR laser applications

    Get PDF
    A multispectral anti-reflective coating of high radiation strength for laser applications in the IR spectrum for nonlinear ZnGeP2 crystals has been developed for the first time. The coating was constructed using YbF3/ZnS. The developed coating was obtained by a novel approach using ion-beam deposition of these materials on a ZnGeP2 substrate. It has a high LIDT of more than 2 J/cm2. Optimal layer deposition regimes were found for high film density and low absorption, and good adhesion of the coating to the substrate was achieved. At the same time, there was no dissociation of the double compound under high-energy ions
    corecore