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Abstract: A multispectral anti-reflective coating of high radiation strength for laser applications in
the IR spectrum for nonlinear ZnGeP2 crystals has been developed for the first time. The coating
was constructed using YbF3/ZnS. The developed coating was obtained by a novel approach using
ion-beam deposition of these materials on a ZnGeP2 substrate. It has a high LIDT of more than
2 J/cm2. Optimal layer deposition regimes were found for high film density and low absorption,
and good adhesion of the coating to the substrate was achieved. At the same time, there was no
dissociation of the double compound under high-energy ions.

Keywords: single crystal; ZnGeP2; laser-induced damage threshold; crystal structure; optical coatings

1. Introduction

Ion-beam sputtering (IBS) is a well-studied and already proven method for obtaining
thin oxide films, optical anti-reflection coatings (AR), and dielectric mirrors operating in
visible and near-infrared spectral regions [1]. However, the absorption bands of oxide films
in the range of 7–10 µm, due to the presence of ionic M–O bonds [2], limit the use of oxide
materials for creating optical coatings operating in the mid-IR range. Many substrates used
when working in the mid-IR spectrum have a high refractive index, and consequently, a
strong reflection from the working surfaces. For example, an uncoated ZnGeP2 crystal
(hereinafter ZGP) has a refractive index of n = 3.14 and a reflection value of R ≈ 25% from
the working face at a pump wavelength of 2.097 µm [3]. Therefore, to improve the energy
characteristics of parametric frequency converters based on these crystals, anti-reflection
optical coatings are used.

A group of chemical compounds based on sulfides (ZnS), selenides (ZnSe), and fluo-
rides (ThF4, MgF2, YF3, YbF3), which have a transparency window of the order of 1–13 µm,
are used to develop optical anti-reflection coatings in the mid-IR spectrum [4]. These
materials have good adhesive properties, are non-hygroscopic, and have low absorption
in the working wavelength band. Anti-reflection coatings for the mid-IR range based on
the above materials are deposited by electron beam technology or by a magnetron source.
These methods make it possible to achieve high rates of sputtering of the target material
onto the substrate and ensure high productivity by coating a large number of substrates
simultaneously. However, with this approach, thin films are not of the best quality; they
have a low density due to the formation of pores during growth. The density of the film
can be increased using an auxiliary-assisted ion source (the so-called IAD method), but
this may increase the absorption of the film [5], so its use is not always justified. All the
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above characteristics significantly affect the Laser-Induced Damage Threshold (LIDT) of
thin films. Although the optical and adhesive properties of thin films have been studied,
improving the LIDT of anti-reflection coatings is still a priority for the development of
high-power mid-IR laser systems. High LIDT values can be achieved using the IBS method
for applying near and mid-IR anti-reflection coatings [4,6].

Sputtering these materials by the IBS method has been shown in a few studies [7–9]. In
our previous work [10], we had already shown the possibility of sputtering a ZnS ceramic
target in the IBS setup. When using the IBS method, the films are dense with a higher
refractive index compared to films obtained by a method such as IAD, and they have
low absorption and good mechanical properties [4]. However, the high kinetic energy of
particles during ion sputtering of the target can cause a destruction of the double compound
into its components. Because of this, the stoichiometry of the film composition and optical
parameters can be violated. Therefore, it is necessary to choose suitable parameters of
the ion beam so that it is possible to spray sulfide and fluoride compounds without their
destruction.

In this work, zinc sulfide (ZnS) was chosen for the high-refractive layer, and as a
low-refractive layer, ytterbium fluoride YbF3 [11]. The aim is to develop and apply an
AR coating for the ZGP substrate, operating in the multispectral IR range of 2–3 µm and
7.5–8.5 µm wavelengths, which would have high LIDT values.

2. Sputtering Technique

The coatings were made on an Aspira-200 vacuum deposition machine (IZOVAC
company, Belarus). The maximum substrate size is 200 mm in diameter with a maximum
unevenness of up to ±2%. Up to four spray targets can be attached to the rotary water-
cooled base at the same time. The maximum diameter of the targets is 101.6 mm, and the
thickness of each is up to 10 mm. In our case we used ceramic target disks of ZnS and YbF3
(purity 99.99% or 4N for each) with 101.6 mm diameter and 6mm thickness, manufactured
by Xing Kang Coating Materials, China. The gas supply system has electronic flow meters
and valves. Gases are supplied to the system—especially pure argon (Ar 99.999%) and
technically pure oxygen (O2 99.7%). The ion source is an accelerator with an anode layer.
Control of gas parameters and control of ion source parameters are carried out by the
control computer of the vacuum unit. Compensation for the positive charge formed on the
target surface during the deposition process is carried out using the thermal emission of
electrons from a tungsten filament cathode.

In the vacuum unit, the gas supply is provided in two configurations: gas supplied
directly into the vacuum chamber and gas supplied through the annular ion source. In the
first case, the classical gas supply scheme is implemented, which is used in most vacuum
deposition systems. In the case of the implementation of the second gas supply scheme,
several advantages appear, including a lower residual pressure in the chamber compared
to when the gas is admitted into the chamber volume. This entails an increase in the film
deposition rate, since particles knocked out from the target reach the substrate region with
a minimum probability of collision with gas molecules. In turn, this also results in denser
films, which increases their optical stability by reducing the number of pores by which
water and other contaminants can enter.

Before loading into the spray chamber, the substrates were cleaned using high-purity
acetone and then washed with bi-distilled water. Immediately before coating in a vacuum
chamber, the substrates were additionally cleaned with an auxiliary ion source at a source
power of ~40 W and ion energy of ~150 eV for 10 min. Additionally, pure argon (Ar
99.999%) was used as a cleaning source. The substrate temperature was maintained at
100 ◦C throughout the entire deposition process.
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3. Multilayer AR Coating Design
3.1. Single Layers Description

To begin with, the monolayers of materials were studied, from which later was de-
veloped an interference coating. The deposition parameters of the studied materials are
presented in Table 1.

Table 1. Deposition parameters of the studied materials.

Sputtering
Target

Accelerating
Voltage of the Ion

Source, kV

Layer
Deposition Rate,

nm/s

Residual Pressure in
the Chamber at the

Beginning of the
Spraying Process, Pa

Working Pressure
in the Chamber

during Spraying,
Pa

Used Gas/Flow,
cm3 per Minute

YbF3 1.7 0.02 5 × 10−4 5 × 10−2 Ar/18

ZnS 2.5 0.045 5 × 10−4 3.3 × 10−2 Ar/15

Monolayers were described in a wide spectral range of 0.4–10 µm. The sputtering was
carried out on various substrates: Asahi brand optical glass, BK8 glass and single crystal
silicon wafers, and ZGP wafers. The thickness of the deposited monolayer was about
1 µm in order to obtain several interference peaks in the IR region and correct dispersion
parameters. Then the transmission and reflection spectra of the studied monolayers were
measured on two spectrometers. For the visible and near IR regions, a Shimadzu UV-
3600Plus spectrometer (Kyoto, Japan) was used; for the mid-IR region, a Simex Fourier
spectrometer (Novosibirsk, Russia) was used. Figure 1 shows that the obtained transmission
and reflection spectra corresponds to the YbF3 monolayer on the BK8 (Figure 1a) and ZGP
(Figure 1b) substrates.
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Figure 1. (a)—transmission spectrum of an YbF3 monolayer on a BK8 substrate; (b)—reflection
spectrum on a ZGP substrate.

Based on the obtained interference peaks, the refractive index dispersion of the YbF3
monolayer, shown in Figure 2, was determined in the wide spectral range. The dispersion
characteristics of both monolayers were calculated in the Optilayer software (version 15.12d)
environment in the Optichar module.
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Figure 2. The black curve is the obtained refractive index dispersion of an YbF3 monolayer by IBS
method; the red curve is dispersion of an YbF3 film by e-beam evaporation taken from [12]; the green
curve is dispersion of an YbF3 film by thermal evaporation taken from [13].

The dispersion characteristic agrees with the data obtained by the IBS method in [4].
At the same time, the refractive index of the obtained YbF3 film is higher (n ≈ 1.55 on 2 µm)
than similar films which were obtained by the IAD method (n ≈ 1.48 on 2 µm) in [12] and
by the thermal evaporation method (n ≈ 1.46 on 2 µm) in [13]. This fact indicates that
the film obtained in this study by the IBS method is denser and less porous than those
obtained by other methods of sputtering. From this point of view, such films may have
greater resistance to LIDT, since they are less porous and therefore less hygroscopic and
have better stoichiometry. In addition, the film is characterized by high transparency in the
mid-IR range [12], but the absorption spectrum was not determined due to the used ZGP
substrate having absorption in the mid-IR region.

Figure 3a,b shows the reflection spectrum of a ZnS monolayer on a BK8 substrate and
a mono crystalline silicon substrate in the range of 0.4–10 µm. 

2 

 

Figure 3. a – transmission and reflection spectra of a ZnS monolayer on BK8 substrate; b – reflection spectrum of a ZnS monolayer. 

 

Figure 3. (a)—transmission and reflection spectra of a ZnS monolayer on BK8 substrate;
(b)—reflection spectrum of a ZnS monolayer.

From the interference peaks, as for the YbF3 monolayer, the optical dispersions of the
refractive index and absorption coefficient of the ZnS monolayer were calculated, as shown
in Figure 4.
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The characteristic of refractive index dispersion of a ZnS monolayer also agrees with
the literature data [4,12–14]. The refractive index of the film deposited by the IBS method is
slightly lower (∆n ≈ 0.2) than that of the films obtained by the IAD and thermal evaporation
methods. The absorption dispersion of the ZnS monolayer was determined only for visible
and near IR spectrum. Strong absorption in the film begins only in the visible range at
wavelengths shorter than 600 nm. In the mid-IR range from 1 to 10 µm, the film absorption
was not determined due to the absence of correct measurements of transmission. Therefore,
only dispersions of the refractive indices were determined for the films, which were
subsequently used to calculate the target coating.

According to the analysis of the films’ dispersion characteristics, the IBS method can be
used to sputter these materials. With the optimal selection of the ion source parameters, the
dissociation of the double compound molecules does not occur. The monolayers dispersion
characteristics were used to calculate a multilayer anti-reflection coating on a ZGP substrate.

3.2. Designed Multilayer AR Coating

In this work, an anti-reflection coating on a ZGP substrate was designed, as a material
used to create parametric light generators. OPO data can be used for various purposes,
including remote gas analysis, medicine, etc. The anti-reflection coating presented in
the article is multispectral. The coating consists of seven layers with a total thickness
of 1305 nm. To improve the adhesion of the substrate coating and to reduce mechanical
stresses, a low-refractive YbF3 layer of small thickness ~40 nm was deposited as the first
layer. The studied parameters of the coating and the obtained characteristics are shown
in Table 2.

Table 2. Theoretical and experimental AR coatings parameters.

Pairs of Materials Used

Target Operating Range
(Reflection no more than 1%
Pump Area/No more than 2%

OPO Area) in nm

Number of Layers in the
Coating Total Coating Thickness, nm

ZnS/YbF3

2097;
2800–3000;
7500–8500.

7 1305

Figure 5 shows the curves of the calculated and measured reflection spectrum of the
final coating.
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Figure 5. The calculated and measured reflection spectrum of the developed coating.

The red curve indicates the spectral reflection characteristics calculated in the Optilayer
software environment. The target operating ranges of the coating for which the calculation
was made are 2097 nm, 2800–3000, and 7500–8000 nm. The black curve in the figure
indicates the measured spectrum of the obtained coating on the ZGP substrate. There are
differences between the theoretical curve and the measured reflection spectrum, due to the
absence of a quartz sensor for controlling the layer thickness in the spraying machine. The
coating thickness is controlled only by the optical method and introduces an error when
spraying the layer. This error can be summed up, and the finished coating has distinctions
from the theoretical spectrum. It is also possible that there is an error in determining
the refractive index of the materials used, and, consequently, the difference between the
calculated characteristics of the coating and the real one. This error can occur, among other
reasons, due to the fact that the measurement of the refractive index takes place in air, and
the deposition in the chamber is in vacuum. Also, this error can be caused by the fact that
the determination of the refractive index was made only by reflection in the IR region of
the spectrum. There is also a slight difference in the absolute value of the reflection value
of the measured film characteristic compared to the calculated one. We attribute this to the
residual reflection from the second face of the sample, since it was matted with a finely
dispersed grinding powder with a grain size of about 5 µm.

However, the sprayed coating fully complies with the target characteristics specified
in the calculations. At the target wavelength of 2097 nm, the reflection is R ≤ 0.7%; in the
range of 2800–3000 nm, the reflection is R ≤ 1.8%; and in the range of 6900–8900 nm, the
reflectance does not exceed R ≤ 2%, with a reflection minimum of R ≤ 0.5% at λ = 7600 nm.
The resulting coating fully matches the target requirements and can be used for anti-
reflection of ZGP-based OPOs operating in the mid-IR range. However, another essential
coating parameter is its LIDT, the results of which are presented below.

4. LIDT Test Method

LIDT testing of the obtained substrate/film system (SGP with applied anti-reflection
coating based on alternating layers of ZnS/YbF3) was conducted by a Ho3+:YAG laser with
parameters presented in Table 3.

Table 3. Ho3+:YAG laser parameters.

Active Element Type Wavelength, nm Pulse Repetition
Frequency, kHz Pulse Duration, ns Average Power, W

Solid State Ho3+:YAG 2097 10–20 35 ns 1–20

The scheme of the experimental setup is shown in Figure 6. The measured diameter of
the focused spot of the Ho3+:YAG laser radiation at the input aperture of the test sample
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in all experiments was d = 350 ± 10 µm at the e−2 level from the maximum intensity. The
power of the incident laser radiation was changed using an attenuator consisting of a half-
wave plate (λ/2) and a Glan polarization prism (BSC). A Faraday insulator (F.I.) was used to
prevent reflected radiation from entering the laser, which prevented uncontrolled changes
in the parameters of the affected radiation. The average power of the laser radiation (Pav)
was measured before each experiment with an Ophir power meter (P.M.).
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According to the international standard ISO 11146 [15], the energy density of laser
radiation and the power density were determined by the following expressions:

W = 8Pav/(fπd2), (1)

P = 8Pav/(τfπd2), (2)

where d is the diameter of the laser beam, f is the pulse repetition frequency, and τ is the
duration of the laser pulses.

To determine the optical breakdown threshold of the samples, the “R-on-1” method
was used, which requires less space on the sample surface compared to the “S-on-1” method
and, therefore, can be applied to samples with a limited aperture, although it is considered
rougher [16]. The essence of this technique is that each region of the crystal is irradiated
with laser radiation with a sequential increase in the intensity of laser radiation, until an
optical breakdown occurs or a predetermined energy density value is reached. In our work,
the study was carried out with exposure duration τex = 5 s. The sample under study was
exposed to packets of laser pulses with a fixed level of energy density, which did not cause
damage to the surface of the crystals. Further, the level of energy density increased with a
step of ~0.1 J/cm2. When visible damage appeared on one of the surfaces of the nonlinear
element, the experiment was terminated. Then the sample was moved by 0.5 mm in height
or width using a two-coordinate shift; the experiment was repeated five times. The optical
breakdown probability was obtained by plotting the cumulative probability as a function of
the optical breakdown energy density. The value of the optical breakdown threshold (W0d)
was taken to be the energy density corresponding to the approximation of the probability of
optical breakdown to zero. Figure 7 shows the results of measuring the optical breakdown
threshold using the R-on-1 method. In the presented graphs, the probability of optical
breakdown in relative units, normalized to unity, is plotted along the ordinate axis, and the
energy density of the testing laser radiation is plotted along the abscissa axis.
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Figure 7. Dependence of the optical breakdown probability of samples No. 1 and No. 2 on the
energy density of the incident laser radiation—(a); and on the power density of the incident laser
radiation—(b).

5. Experimental Results of LIDT Test and Discussion

According to the R-on-1 method, using the experimental stand shown in Figure 6, the
values of the optical breakdown threshold of ZGP samples No. 1 (without anti-reflection
coatings) and No. 2 (with a coating based on alternating YbF3 and ZnS layers) were
determined (Figure 7). The standard deviation of the LIDT determination was ±0.1 J/cm2.

According to the experimental data, the LIDT of the ZGP sample No. 1 (without
anti-reflection coatings) was W0d = 2.2 ± 0.1 J/cm2 (64 MW/cm2). The LIDT of sample
No. 2 (with YbF3/ZnS anti-reflection coating) was W0d =2.9 ± 0.1 J/cm2 (83 MW/cm2).
The growth of LIDT upon deposition of an anti-reflection coating on single crystal ZGP was
32%. The studied samples had a low absorption at the exposure wavelength (0.03 cm−1 at a
wavelength of 2097 nm), which indicates a low concentration of point defects affecting the
absorption intensity [17,18]. The presence of binary phosphides [18], impurity elements [18],
and bulk defects (by the digital holography method [19]) was not found in all the samples
studied, which indicated a qualitative stoichiometric crystal structure of a single crystal.
Since both samples were cut from the same ingot, the obtained data of the difference in
the optical breakdown threshold of samples No. 1 and No. 2 can be explained by the
applied coating. A similar trend towards an increase in LIDT during the deposition of
optical coatings was observed in the work [20]. The authors of the work found that the
deposition of an antireflection coating on the ZGP crystal leads to an increase in LIDT by a
factor of 2 from 1 J/cm2 to 2 J/cm2. However, in this work, there are no data on the applied
interference coating, so we are unable to compare it directly.

The anti-reflection coating, characterized by good adhesion to the polished surface
of the crystal and compensated internal stresses, leads to an increase in the threshold of
optical breakdown compared to an unenlightened sample. In turn, this occurs due to the
“closing” of broken chemical bonds and bulk defects emerging on the polished surface of
the crystal.

6. Conclusions

The achieved studies have shown the possibility of sputtering ZnS and YbF3 ceramic
targets by the IBS method onto the ZGP substrate. The monolayers had a high refractive
index compared to the films obtained by the e-beam and IAD methods. Extremely low
film absorption is also shown over the entire operating range. The optimal parameters of
the ion source were selected, wherein the dissociation of the double compound into its
components does not occur. Based on the dispersion characteristics of the monolayers, a
multispectral anti-reflection coating was developed for the mid-IR range. ZGP material
was used as a substrate. It is shown that the anti-reflection coating increases the LIDT of a
single crystal by up to 32%, from 2.2 ± 0.1 J/cm2 to 2.9 ± 0.1 J/cm2.
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The developed coating is multispectral, has low absorption and high LIDT, and can
also be used for deposition on various crystalline and amorphous substrates in the IR range.
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