81 research outputs found

    Is the Right to Vote Equal to Democracy? — An Analysis of Substantive and Procedural Democracy in the United States

    Get PDF
    In modern political society, democracy remains a universal concept. However, different ideologies still have their own views on the concrete realization form of democracy. Nowadays, the understandings of the concept of democracy in the United States and its democratic values have become the mainstream of Western society, and their historical value and role should not be ignored. However, the practice of this democratic system has differed from true democracy and has gradually manifested political confusion. Firstly, this paper introduces the development of democracy and electoral system, and explains that the initial meaning of Western democracy is institutional democracy, namely procedural democracy, which is not the same as what we think of popular sovereignty today, and that the development course of Western democracy is also the expansion process of procedural justice. Then, constructivism theory is used to discuss the proceduralized process of substantive democracy and to explain the relationship between procedural justice and substantive democracy. Finally, through a specific analysis of the evolution and practice of the democratic electoral system in the United States, it concludes that the development of American democracy focuses only on expanding the scope of procedural democracy, but neglects the development of substantive democracy. For this reason, it explores the problems existing in American democracy

    HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR

    Full text link
    We propose Human-centered 4D Scene Capture (HSC4D) to accurately and efficiently create a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, and rich interactions between humans and environments. Using only body-mounted IMUs and LiDAR, HSC4D is space-free without any external devices' constraints and map-free without pre-built maps. Considering that IMUs can capture human poses but always drift for long-period use, while LiDAR is stable for global localization but rough for local positions and orientations, HSC4D makes both sensors complement each other by a joint optimization and achieves promising results for long-term capture. Relationships between humans and environments are also explored to make their interaction more realistic. To facilitate many down-stream tasks, like AR, VR, robots, autonomous driving, etc., we propose a dataset containing three large scenes (1k-5k m2m^2) with accurate dynamic human motions and locations. Diverse scenarios (climbing gym, multi-story building, slope, etc.) and challenging human activities (exercising, walking up/down stairs, climbing, etc.) demonstrate the effectiveness and the generalization ability of HSC4D. The dataset and code are available at http://www.lidarhumanmotion.net/hsc4d/.Comment: 10 pages, 8 figures, CVPR202

    On the laboratory calibration of dielectric permittivity models for agricultural soils: Effect of systematic porosity variation

    Get PDF
    Dielectric techniques are fundamental methods for measuring soil water content, and they commonly rely on the conventional laboratory calibration of the dielectric permittivity models between a dielectric constant and water content. As a non-negligible factor, porosity has been constructed differently in some models as a calibration constant, but the systematic porosity variations during the laboratory model calibration and field applications are not yet well addressed. Based on time-domain reflectometer laboratory calibration experiments, this study investigated this issue using three preestablished dielectric permittivity models: the Purdue calibration equation (American Society for Testing and Materials model [ASTM]), the complex refractive index model (CRIM), and a piecewise CRIM model (CRIMP). Results demonstrate that a generalized porosity constant used in the calibration would bring in additional structural bias compared with the calibration using variable porosities, and its magnitude varies with the model structure. The deviation of the generalized porosity constant can further amplify the structural bias of ASTM and CRIM for soils with low clay content, but it is insensitive for the soils with high clay content due to the overwhelming role of model structure error. Only the model CRIMP with a “perfect” model structure can effectively cope with the systematic porosity variation and keep a stable built-in capability for estimating calibration constants from readily available soil data. These findings highlight ignoring porosity variation should not be taken for granted for calibrating and applying the preestablished models

    Silica-Lipid Hybrid Microparticles as Efficient Vehicles for Enhanced Stability and Bioaccessibility of Curcumin

    Get PDF
    Kurkumin je aktivni sastojak koji ima višestruku ulogu, no njegova je uporaba ograničena zbog slabe topljivosti u vodi i stabilnosti, a time i slabe biološke raspoloživosti. Stoga je svrha ovoga rada bila osmisliti kako zaobići ta ograničenja. Postupkom emulgiranja dobivena je nanoemulzija s kurkuminom, a nakon toga sušenjem u vakuumu hibridne mikročestice nanoemulzije u silicijevom dioksidu. Udjel kurkumina u nanoemulziji bio je (0,30±0,02) %, a u mikročesticama (0,67±0,02) %. FTIR i XDR analizom utvrđeno je da je kurkumin u mikročesticama inkapsuliran u poroznom amorfnom silicijevom dioksidu. Antioksidacijska aktivnost kurkumina in vitro nije se smanjila nakon inkapsulacije. Simulacijom probave in vitro utvrđeno je da je biološka raspoloživost kurkumina u nanoemulziji i mikročesticama bila veća nego u kontrolnom uzorku. Stabilnost mikročestica ostala je ista tijekom 6 tjedana skladištenja u mraku pri temperaturama od 4, 25 i 40 °C. Osim toga, pokazalo se da su pri izlaganju svjetlosti, mikročestice imale bolju kemijsku stabilnost od nanoemulzije. Pri koncentraciji nanoemulzije manjoj od 45 μg/mL preživljavanje stanica bilo je veće od 80 %. Stoga možemo zaključiti da mikročestice mogu poslužiti kao nosači kurkumina te poboljšati njegovu topljivost, stabilnost pri izlaganju svjetlosti te biološku raspoloživost.Curcumin is an active ingredient with multiple functions, but its application is often restricted due to its poor water solubility, weak stability, and consequently low bioaccessibility. Based on this, the aim of this work is to develop a new vehicle to overcome these restrictions. Here we developed a curcumin-loaded nanoemulsion and then curcumin-loaded silica-lipid hybrid microparticles through emulsification and vacuum drying, respectively. The loading of curcumin in the nanoemulsion and microparticles was (0.30±0.02) and (0.67±0.02) %, respectively. FTIR and XRD analyses of microparticles revealed that curcumin was encapsulated in porous, amorphous silica. In vitro antioxidant activities showed that the encapsulation would not affect the antioxidant activity of curcumin. In vitro simulated digestion indicated that nanoemulsion and microparticles had higher curcumin bioaccessibility than the control group. The storage stability of microparticles remained the same during 6 weeks in the dark at 4, 25 and 40 °C. Moreover, the microparticles had a better chemical stability than nanoemulsion under the light. The cell viability was over 80 % when the concentration of nanocarriers was less than 45 μg/mL. Hence, the microparticles could be a promising means to load curcumin and improve its solubility, light stability and bioaccessibilit

    Over-expression of a gamma-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa

    Get PDF
    α-Tocopherol is one of the most important vitamin E components present in plant. α-Tocopherol is a potent antioxidant, which can deactivate photoproduced reactive oxygen species (ROS) and prevent lipids from oxidation when plants suffer drought stress. γ-Tocopherol methyltransferase (γ-TMT) catalyzes the formation of α-tocopherol in the tocopherol biosynthetic pathway. Our previous studies showed that over-expression of γ-TMT gene can increase the accumulation of α-tocopherol in alfalfa (Medicago sativa). However, whether these transgenic plants confer increased drought tolerance and the underlying mechanism are still unknown.This work was financially supported by Earmarked Fund for China Agriculture Research System (CARS-34), the National Natural Science Foundation of China (31872410), National Crop Germplasm Resources Center (NICGR-78), and the Agricultural Science and Technology Innovation Program (ASTIPIAS10)

    Low energy consumption flow capacitive deionization with a combination of redox couples and carbon slurry

    Get PDF
    Flow-electrode capacitive deionization (FCDI) is a new sustainable desalination technology where continuous desalination can be achieved by the electrodialysis coupling method. However, its development is hindered owing to high energy consumption and low salt removal rate. Herein, by combining ferri-/ferrocyanide redox couple with flow activated carbon (AC)/carbon black (CB) slurry, continuous desalination process is achieved with a high salt removal rate of 1.31 μg cm-2 s-1 and low energy consumption of 102.68 kJ mol-1 at the current density 2.38 mA cm-2 (50 mA current for a 21 cm2 active area). The operating voltage plateau can be reduced to 0.69 V when 10 wt% AC/CB (mass ratio of 9:1) is mixed with 20 mM/20 mM ferri-/ferrocyanide as the flow electrodes, compared with more than 3 V for only carbon flow or redox medium alone. The influences of carbon content and current densities are further investigated to so that the performances can be controlled. This work enables the development of energy-saving desalination systems by coupling FCDI with redox desalination technique

    Re-examining the effect of door-to-balloon delay on STEMI outcomes in the context of unmeasured confounders: a retrospective cohort study

    Get PDF
    Literature studying the door-to-balloon time-outcome relation in coronary intervention is limited by the potential of residual biases from unobserved confounders. This study re-examines the time-outcome relation with further consideration of the unobserved factors and reports the population average effect. Adults with ST-elevation myocardial infarction admitted to one of the six registry participating hospitals in Australia were included in this study. The exposure variable was patient-level door-to-balloon time. Primary outcomes assessed included in-hospital and 30 days mortality. 4343 patients fulfilled the study criteria. 38.0% (1651) experienced a door-to-balloon delay of >90 minutes. The absolute risk differences for in-hospital and 30-day deaths between the two exposure subgroups with balanced covariates were 2.81 (95% CI 1.04, 4.58) and 3.37 (95% CI 1.49, 5.26) per 100 population. When unmeasured factors were taken into consideration, the risk difference were 20.7 (95% CI −2.6, 44.0) and 22.6 (95% CI −1.7, 47.0) per 100 population. Despite further adjustment of the observed and unobserved factors, this study suggests a directionally consistent linkage between longer door-to-balloon delay and higher risk of adverse outcomes at the population level. Greater uncertainties were observed when unmeasured factors were taken into consideration

    The characteristics of impaired fasting glucose associated with obesity and dyslipidaemia in a Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different populations have diverse patterns of relationships between Impaired Fasting Glucose (IFG) and obesity and lipid markers, it is important to investigate the characteristics of associations between IFG and other related risk factors including body mass index (BMI), waist circumstance (WC), serum lipids and blood pressure (BP) in a Chinese population.</p> <p>Methods</p> <p>This was a case-control study of 648 IFG subjects and 1,296 controls derived from a large-scale, community-based, cross-sectional survey of 10,867 participants. Each subject received a face-to-face interview, physical examination, and blood tests, including fasting blood glucose and lipids. Student's <it>t</it>-test, Chi-square test, Spearman correlation and multiple logistic regressions were used for the statistical analyses.</p> <p>Results</p> <p>Fasting plasma glucose (FPG) was positively correlated with BMI, WC, systolic blood pressure (SBP), diastolic blood pressure (DBP), triglyceride (TG), and total cholesterol (TC), and was negatively correlated with high density lipoprotein-cholesterol (HDL-C) (all p < 0.05). BMI was more strongly correlated with IFG than with WC. The correlation coefficient of FPG was remarkably higher with TG (0.244) than with TC (0.134) and HDL-C (-0.192). TG was an important predictor of IFG, with odds ratios of 1.76 (95%CI: 1.31-2.36) for subjects with borderline high TG level (1.70 mmol/l ≤ TG < 2.26 mmol/l) and 3.13 (95% CI: 2.50-3.91) for those with higher TG level (TG ≥ 2.26 mmol/l), when comparing to subjects with TG < 1.70 mmol/l. There was a significant dose-response relationship between the number of abnormal variables and increased risk of IFG.</p> <p>Conclusions</p> <p>In this Chinese population, both BMI and WC were important predictors of IFG. Abnormal TG as a lipid marker was more strongly associated with IFG than were TC and HDL-C. These factors should be taken into consideration simultaneously for prevention of IFG.</p

    Faktor-faktor yang mempengaruhi permintaan rumah sederhana di Kota Pontianak

    No full text
    corecore