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Abstract
Dielectric techniques are fundamental methods for measuring soil water content, and

they commonly rely on the conventional laboratory calibration of the dielectric per-

mittivity models between a dielectric constant and water content. As a non-negligible

factor, porosity has been constructed differently in some models as a calibration con-

stant, but the systematic porosity variations during the laboratory model calibration

and field applications are not yet well addressed. Based on time-domain reflectome-

ter laboratory calibration experiments, this study investigated this issue using three

preestablished dielectric permittivity models: the Purdue calibration equation (Amer-

ican Society for Testing and Materials model [ASTM]), the complex refractive index

model (CRIM), and a piecewise CRIM model (CRIMP). Results demonstrate that a

generalized porosity constant used in the calibration would bring in additional struc-

tural bias compared with the calibration using variable porosities, and its magnitude

varies with the model structure. The deviation of the generalized porosity constant

can further amplify the structural bias of ASTM and CRIM for soils with low clay

content, but it is insensitive for the soils with high clay content due to the overwhelm-

ing role of model structure error. Only the model CRIMP with a “perfect” model

structure can effectively cope with the systematic porosity variation and keep a sta-

ble built-in capability for estimating calibration constants from readily available soil

data. These findings highlight ignoring porosity variation should not be taken for

granted for calibrating and applying the preestablished models.

1 INTRODUCTION

The dielectric measurement techniques operating at high

frequency such as time domain reflectometry (TDR), ground-

penetrating radar (GPR), and microwave remote sensing

Abbreviations: ASTM, American Society for Testing and Materials

model; CRIM, complex refractive index model; CRIMP, piecewise complex

refractive index model; GPR, ground-penetrating radar; MAE, mean

absolute error; MSD, mean standard deviation; SEE, standard error of

estimate; TDR, time-domain reflectometry; TOPP, Topp model.
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(Huisman, Hubbard, Redman, & Annan, 2003; McNairn,

Pultz, & Boisvert, 2002; Robinson et al., 2008) are funda-

mental approaches for measuring soil water content at various

scales. These soil water measurement methods are based

on the substantial difference between dielectric constants of

water, minerals, and air. There are a variety of petrophysical

models developed to relate the measured bulk dielectric

constant to soil water content. Considering the complex inter-

actions between soil and water (Chen & Or, 2006), modeling

the dielectric conditions of wet soils requires experimentally
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determined model constants—namely, calibration—for

different soils. However, the direct field calibration of the

petrophysical model for site-specific soil is the most accurate

approach for measuring soil water content, but it is seldom

used due to labor-intensive auxiliary measurements. Alterna-

tively, a variety of preestablished dielectric permittivity mod-

els derived from laboratory experiments are widely used due

to its accessibility and versatility (Robinson, Jones, Wraith,

Or, & Friedman, 2003; Roth, Malicki, & Plagge, 1992).

Soil porosity has been identified as an important role in

modeling soil dielectric behavior and has been constructed

in most preestablished dielectric permittivity models. The

empirical determination of material-specific calibration equa-

tions usually directly includes soil porosity or dry bulk den-

sity (Jacobsen & Schjonning, 1993; Drnevich, Ashmawy, Yu,

& Sallam, 2005; Malicki, Plgge, & Roth, 1996). With more

understanding of multiphysical processes arising from the

soil–water dielectric interactions, theoretical mixing models

were developed to link dielectric constants of each phase with

their volumetric fractions. Commonly, the simple three-phase

mixing models work well for quantifying the bulk dielec-

tric constant of low dielectric-loss soils (Birchak, Gardner,

Hipp, & Victor, 1974; Roth, Schulin, Fluhler, & Attinger,

1990; Weitz, Grauel, Keller, & Veldkamp, 1997). Since the

dielectric constant of bound water is much lower than that of

free water (Dobson, Ulaby, Hallikainen, & El-Rayes, 1985),

its role becomes non-negligible for quantifying dielectric

mediate loss soils with notable bounding water. Thus, more

advanced four-phase models were proposed to cover a wider

range of applicability (Dobson et al., 1985; Friedman, 1998;

Ponizovsky, Chudinovaa, & Pachepsky, 1999). In fact, no

matter whether the porosity is defined as a constant or a vari-

able in the dielectric permittivity models, it is often imprac-

tical to obtain the porosity values at the field conditions with

temporal variation. Normally, just representative values are

used to derive the empirical or semiempirical relationships

from specific laboratory calibrations.

For the laboratory calibration of dielectric permittivity

models for specific soil, there are two commonly used

approaches for controlling soil water conditions. One is to pro-

duce soil samples with different specific water content values

ranging from air dry to near water saturation. The wetted soil

samples need to be compacted in the sample container, but

the bulk density (the soil porosity) usually changes with water

content, according to soil compaction theory (Das, 2008).

The other approach is to produce soil samples with contin-

uously varying water contents via drainage and evaporation.

The soil porosity may also change with water content due to

swelling–shrinkage process, especially for the fine-textured

soils such as loess and expansive soils (Fleureau, Kheirbek-

Saoud, Soemitro, & Taibi, 1993). Furthermore, in situ soil

porosity change of plow-layer soils is more noteworthy than in

the laboratory due to natural and anthropogenic factors such

Core Ideas
∙ Systematic porosity variation is noteworthy for

dielectric measurement techniques.

∙ Impacts of porosity generalization on model cali-

bration vary with model structure and soil type.

∙ Caution is needed for calibrating and applying

preestablished models for agricultural soils.

as wetting–drying, freezing–thawing, and plowing (Alakukku

et al., 2003; Alaoui, Lipiec, & Gerke, 2011; Fabiola,

Giarola, da Silva, Imhoff, & Dexter, 2003; Radford et al.,

2000). These patterned porosity changes are hereinafter

referred to as systematic porosity variation. However, a

constant porosity is usually employed both in laboratory

calibration and field application. The influences of the poros-

ity variation on the estimation are still not well investigated,

in both laboratory and field conditions. In addition, how to

choose a representative value for the porosity and its impact

on the measurement accuracy of different dielectric permit-

tivity models are well assessed for different soils. Hence,

research on the effect of soil water-related processes like com-

paction and shrinkage on the dielectric behavior of differ-

ent soils in laboratory calibration would be very helpful to

bridge the gap between laboratory calibration and field appli-

cation (Schwing, Scheuermann, & Wagner, 2010; Steelman

& Endres, 2011; Thomas, Chapman, Rogers, & Metje, 2010a,

2010b).

In this study, we take four dielectric permittivity models

with different degrees of porosity representation for illustra-

tion purposes. The effect of porosity change with the degree

of water saturation on the conventional calibration of TDR

measurements is investigated using eight different soils. The

specific objectives are (a) to diagnose the role of system-

atic porosity variation in the structural residuals between

water content observations and model estimates; and (b) to

find practical solutions to cope with the water content mea-

surements in the agricultural soils with systematic porosity

variation.

2 MATERIALS AND METHODS

2.1 Laboratory measurements

The eight soils in Table 1 were sampled from the upper

30 cm of the A horizon in the agricultural lands with

different genesis environments in China. The soil texture

information was obtained from a laser diffraction particle

size analyzer (Beckman Coulter LS 13320). The soil organic
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T A B L E 1 Physical properties of eight soil samples in China

Part Soil no. Texturea/classificationb Location Clay Silt Sand SOMc

%

Part 1 S1 Sandy loam/Aridi-Sandic Primosols Henan 14.4 4.8 80.8 0.36

S2 Sandy loam/Siltigi-Ustic Cambosols Xinjiang 14.7 15.0 70.2 0.80

S3 Silt loam/Loessi-Orthic Primosols Shanxi 22.6 53.6 23.8 0.25

S4 Loam/Ochri-Aquic Cambosols Henan 26.2 31.2 42.6 0.94

Part 2 S5 Silty clay loam /Hapli-Ustic Cambosols Gansu 35.7 47.2 17.1 1.53

S6 Clay/Hapli-Udic Isohumosols Heilongjiang 40.8 35.9 23.3 2.69

S7 Clay/Ali-Udic Argosols Jiangxi 51.1 27.0 21.9 1.09

S8 Silty clay/Shajiang Calci-Aquic Vertosols Anhui 51.3 41.1 7.6 1.82

aThe USDA classification.
bThe Chinese soil taxonomy (ISS, 2001).
cSOM, soil organic matter.

T A B L E 2 Four dielectric permittivity models

Model Equation Calibration constants
Known
constants

TOPP, Topp et al.

(1980)

θ = −5.3 × 10−2 +
2.92 × 10−2εb − 5.5 ×
10−4ε2b + 4.3 × 10−6ε3b

none

ASTM, Drnevich

et al. (2005)

√
εb = 𝑎

ρs(1−Φ)
ρw

+ 𝑏θ a, b Φ, ρs = 2.65 g cm−3,

v = 1.0 g cm−3

CRIM, Birchak et al.

(1974)

εαb = (1 − Φ)εαs + θεαw + (Φ − θ)εαa εs, α Φ, εa = 1, εw = 78

CRIMP, Ponizovsky

et al. (1999)
εαb =

{(1 − Φ)εαs + θεαc + (Φ − θ)εαa , θ < θc,max
(1 − Φ)εαs + θc,maxεαc + (θ − θc,max)εαw + (Φ − θ)εαa , θ ≥ θc,max

εc, θc,max, α Φ, εs = 4, εa = 1,

εw = 78

Note. TOPP, the Topp model; ASTM, American Society for Testing and Materials model; CRIM, the complex refractive index model; CRIMP, a piecewise CRIM model.

θ and θc,max and the total volumetric water content and the maximum volumetric content of bound water, respectively; εb is the bulk dielectric constant; εs, εw, εc, and εa

are the dielectric constants of solid phase, free water, bound water, and air, respectively; ρs and ρw are the density of soil particle and water; Φ is the soil porosity; α is a

geometrical parameter; a and b are free model fitting parameters.

contents were measured using the hydrated heat potassium

dichromate oxidation-colorimetry method (Bremner & Jenk-

inson, 1960). Given the importance of clay content in dielec-

tric permittivity model performance, the eight soils were

organized as two groups (Part 1: clay % < 30%, Part 2:

clay% > 30%).

2.2 Dielectric permittivity models

Four representative dielectric permittivity models with differ-

ent degrees of porosity representation in Table 2 are used in

this study. The first model, Topp, Davis, and Annan (1980)

(TOPP), was established using specific laboratory calibra-

tion with gravimetric sampling. It describes the dielectric

permittivity model for a wide range of mineral soils but

without considering the effect of soil porosity. The second

one, Drnevich et al. (2005) (ASTM), was semiempirically

derived from soil specific calibration, and porosity is incor-

porated via the relation between soil bulk density and the

common soil particle density. The last two models, Birchak

et al. (1974) (CRIM) and Ponizovsky et al. (1999) (CRIMP),

were constructed based on theoretical mixing rules, but the

latter does not only consider soil porosity but also bound water

effect. Hence, its application range can extend to soils with

high clay content.

2.3 General calibration procedure

To quantify the relationship between soil dielectric constant

and volumetric water content for each soil, we made designed

samples with a variety of water content from air dried to

nearly saturated. For each designed water content, the oven-

dried soil samples were placed to a thin layer on a tray and

sprayed with certain purified water. Then, soil samples were

packed in a beaker with a 10-cm diameter and 20-cm height.

Through rough layer by layer compaction, the beaker was
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F I G U R E 1 Effect of water content on porosity in the repeated calibrations (Trials 1 and 2). The dashed line is the mean value Φ̄r (the averaged

value of all the estimated porosities) of all samples for each soil

filled up to a height of around 18 cm, and the soil sample

surface was then trimmed evenly for determining the sample

volume. For replication, another specimen with the same soil

samples was made in parallel by another operator. Before each

TDR measurement, the specimens were stored at a room tem-

perature of around 24 ˚C over 48 h for equilibrating. After

the TDR measurement, the specimens were weighed and then

removed from the beakers for oven drying. After oven dry-

ing, volumetric water content and porosity were calculated

by using a mean particle density of 2.65 g cm−3 for com-

mon soils (Blanco-Canqui, Lal, Post, Izaurralde, & Shipitalo,

2006).

A recently commercialized sensor TDR315 (Acclima,

Meridian) with stainless steel three-element waveguide

(15 cm × 3.5 mm) was used to measure soil dielectric con-

stants. It operates the same principles of conventional TDR

working in the gigahertz frequency range (Datta et al., 2018).

In the experiment, five TDR315 probes were used, and the

wave-form data were collected by a CR1000 data-logger

(Campbell Scientific). Travel time derived from the wave-

form data are based on the tangent-line methods (Evett, 2000;

Or, Jones, Van Shaar, Humphries, & Koberstein, 2004). In

addition, following Heimovaara (1993) and Robinson et al.

(2003), a travel time correction factor t0 is applied to the travel

time evaluation in order to account for the signal travel time

within the sensor head. This results in two unknowns: the cor-

rection factor t0, and an electrical length of the probe, Le.

They can be obtained from calibration measurements in air
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F I G U R E 2 Curve fitting of the dielectric constant relationship using four calibration models (the Topp model [TOPP], the American Society

for Testing and Materials model [ASTM], the complex refractive index model [CRIM], and a piecewise CRIM model [CRIMP]). Panels a–h are the

sampling soils from S1 to S8

and deionized water by solving the two equations

𝑡a = 𝑡0 + 2𝐿e
√
εa
/
𝑐0 (1)

𝑡w = 𝑡0 + 2𝐿e
√
εw

/
𝑐0 (2)

where ta and tw are the measured total travel times in air and

water, respectively; the known dielectric constant of air and

water are set as εa = 1 and εw = 78 (Kaatze, 1989), respec-

tively; and c0 is the velocity of electromagnetic signals in free

space (0.3 m ns−1).

The procedure for deriving soil dielectric constant is

briefly summarized as follows. Firstly, three repeated mea-

surements were recorded for each soil filled beaker, and

corresponding travel times ts are obtained using the above

approach. Then, following Equation 1, the soil dielectric

constant εs was calculated with the mean ts and other known

parameters.

Then, the calibration constants for each model in Table 2

are estimated by fitting the dielectric permittivity model to the

observed points, using the sum of squared error (SSE) objec-

tive function
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F I G U R E 3 Performances of four calibration models (the Topp model [TOPP], the American Society for Testing and Materials model [ASTM],

the complex refractive index model [CRIM], and a piecewise CRIM model [CRIMP]) for three groups of soils (Part 1, Part 2, and all). The error

structure in red color is presented by the mean and error bar calculated using the residuals θr − θ̂r within each bin, where θr is the observed volumetric

content, and θ̂r is the predicted value with the models

SSE = 1
𝑅

∑(
θr − θ̂r

)2
(3)

where θr is the observed volumetric content, θ̂r is the

predicted value with the models, and R is the number of

calibration points at different water contents. The calibra-

tion constants were optimized using sequential quadratic pro-

gramming (SQP) algorithm in Octave (GNU Octave 4.4.0),

which uses a successive quadratic programming solver. Other

known constants directly used in the optimization are also
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T A B L E 3 Error statistics of model estimates for three groups of

soils (Part 1, Part 2, and all) when using variable porosity in calibration

Statistica Modelb Part 1 Part 2 All
m3 m−3

SEE TOPP 0.018 0.024 0.021

ASTM 0.013 0.015 0.014

CRIM 0.016 0.022 0.019

CRIMP 0.013 0.013 0.013

MAE TOPP 0.008 0.013 0.011

ASTM 0.004 0.006 0.003

CRIM 0.008 0.012 0.009

CRIMP 0.004 0.004 0.003

MSD TOPP 0.014 0.016 0.017

ASTM 0.012 0.014 0.014

CRIM 0.013 0.016 0.016

CRIMP 0.012 0.013 0.013

aSEE, standard error of the estimates; MAE, mean absolute error of the estimates

for all bins; MSD, mean standard deviation of the estimates for all bins.
bTOPP, the Topp model; ASTM, American Society for Testing and Materials

model; CRIM, the complex refractive index model; CRIMP, a piecewise CRIM

model.

listed in Table 2. Besides, porosity observations were used in

two approaches: (a) the estimated porosities after oven drying

were directly used in the prediction of water content for each

sample during the optimization; and (b) only a generalized

porosity constant was used in the optimization, and it was set

as the averaged value (Φ̄r) of all the estimated porosities for

each specific soil.

2.4 Sensitivity analysis

Soil porosity is constructed differently in the three models—

ASTM, CRIM, and CRIMP. To illustrate the role of poros-

ity in model prediction, exemplifying sensitivity analysis was

conducted with Monte Carlo simulations. Provided the same

white noise σΦ = 0.03 of the porosity Φ = 0.45, there were

50 simulations conducted at each dielectric permittivity val-

ues for each model. The synthetic constants for each model

are given as a = 1.1 and b = 8.8 for ASTM, εs = 5 and α

= 0.5 for CRIM, εc = 20, θc,max = 0.25, and α = 0.5 for

CRIM.

To investigate the impact of the deviation of the general-

ized porosity constant on the calibration, a simple sensitivity

analysis was conducted. Provided the same model fittings for

each soil, the generalized porosity Φ̄r used in the optimization

was replaced with four different values, 0.8Φ̄r , 0.9Φ̄r , 1.1Φ̄r ,

and 1.2Φ̄r with a deviation of −20, −10, +10, and +20% in

Φ̄r , respectively.

2.5 Error analysis

To assess the model predictive performance, three error met-

rics of model estimates are used in this study. As one of the

most common metrics, the standard error of the estimates

(SEE), is calculated as

SEE =
√

1
𝑁 − 2

∑(
θn − θ̂n

)2
(4)

where N is the total number of employed measurements. To

address the model differences in the error distribution over the

saturation range, the entire range of measurements are divided

into a series of K intervals—namely, “bins”—and the mean

error of the M estimates and the standard deviation in the k
bin are calculated as

MEk = 1
𝑀

∑(
θm − θ̂m

)
(5)

and

σk =
√

1
𝑀 − 1

∑(
θm − θ̂m −MEk

)2
(6)

Thus, the mean absolute error (MAE) and the mean stan-

dard deviation (MSD) over the entire range

MAE = 1
𝐾

∑||MEk|| (7)

and

MSD = 1
𝐾

∑
σk (8)

are derived for representing the error characteristics caused by

bias and variance.

3 RESULTS

3.1 Soil porosity variation during
calibrations

Figure 1 shows the variation of the porosity with the degree

of water saturation for the eight soils during the calibration

experiment. The blue and red curves were obtained from two

trials with the same soil samples, and the discrepancy origi-

nated from different compaction pressures by two operators.

Generally, the range of porosity variation for each soil varies

from 0.06 to 0.14, and the evolution of the soil pore structure

experiences two stages. At the first stage, the size and amount

of soil aggregates both increase with the water content and

result in a rapid increase of porosity untill the maximum one

is reached. The corresponding water saturation and content
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F I G U R E 4 Theoretical illustration of the varying sensitivity of the porosity-dependent model prediction (the American Society for Testing and

Materials model [ASTM], the complex refractive index model [CRIM], and a piecewise CRIM model [CRIMP]) to the porosity with white noise (σΦ

= 0.03) over the water dynamic range. Red curve: the model truth; gray curve: error bar of the Monte Carlo simulations

at the maximum porosity roughly increases from sandy soils

to clayey soils. This is mainly attributed to the higher soil-

specific surface area of clayey soils, which need more water

to wet the grain surface than sandy soils. Then, at the second

stage, more and more water lubricates the interface between

soil particles and leads to a closer contact state. The poros-

ity decreases gradually to a minimum (namely, the maximum

compaction) around the liquid limit. Further increase in water

content could easily lead to soil oversaturation and porosity

increase, but such calibration is beyond the scope of this study.

3.2 Residual structures of the calibrations
using variable porosity

Figure 2 shows the fitting curves of the four models for the

eight soils. We note that, since the porosity is used as a known

variable in regression, these curves are different from that

when porosity is assumed to be constant. Figure 3 shows the

water content residuals between the observations and esti-

mates (θr − θ̂r) for the three groups of soils (Part 1, Part 2, and

all in Table 1). For better visualization of the residual struc-

tures, an error bar curve (red color) using MAE and MSD is

added in each plot.

Results in Table 3 show that all the four models perform

reasonably with a SEE of around 0.02 m3 m−3 of the esti-

mates. Generally, the performances of ASTM and CRIMP are

better than those of TOPP and CRIM. Given a comparable

white noise of about 0.015 m3 m−3 in MSD, the differences

among the models mainly originate from the structural biases,

MAE, as shown in Figure 3. For the Part 1 soils, the residual

structures of TOPP and CRIM show a similar pattern to the

porosity variation in Figure 1, whereas it is more evident for

the Part 2 soils with higher clay content.

As illustrated in Figure 4, the sensitivity analysis shows that

the impact of porosity white noise varies differently among

the models of ASTM, CRIM, and CRIMP. The predicted

water content error (σθ,ASTM = 0.011 m3 m−3) of ASTM is

larger than the other two models (σθ,CRIM = 0.004 m3 m−3,

σθ,CRIMP = 0.001 m3 m−3). Overall, the errors of ASTM and

CRIM over the water dynamic range are uniform in statistics,

and the CRIMP is also uniform in two segmented sections.

However, CRIMP is not as sensitive as ASTM and CRIM to

porosity change.

To our knowledge, the residual structures could be associ-

ated with the effects of bound water content and the systematic

porosity variation. In comparison with TOPP, ASTM takes
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F I G U R E 5 Evolution of the residual structures (red curve) of model estimates (the American Society for Testing and Materials model [ASTM],

the complex refractive index model [CRIM], and a piecewise CRIM model [CRIMP]) when using a generalized porosity constant ranging from 0.8Φ̄r
to 1.2Φ̄r for the Part 1 soils. The blue curves are the projected errors when replacing the corresponding generalized porosity constant with the observed

variable porosity. θ stands for volumetric water content
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F I G U R E 6 Contrast sensitivities of the three (the American Society for Testing and Materials model [ASTM], the complex refractive index

model [CRIM], and a piecewise CRIM model [CRIMP]) model estimates to the deviation of the generalized porosity constant (Φ̄r ) for Part 1 and

Part 2 soils. The relative changes of error metrics standard error of the estimate (SEE), mean absolute error (MAE), and mean standard deviation

(MSD) are calculated in relative to the error metrics for the Part 1 and Part 2 soils in Table 3

into consideration of the porosity variation properly and effec-

tively reduces the structural bias. Although CRIM has consid-

ered the porosity variation, the structural bias is still compa-

rable with TOPP. This is mainly attributed to the weak role

of porosity in the model structure of CRIM, whereas CRIMP

further considers the bound water effect and yields the best

result, though it has more parameters than ASTM.

3.3 Residual structures of the calibrations
using generalized porosity constant

In comparison with the above approach using variable poros-

ity, the same model fittings of ASTM, CRIM, and CRIMP

using generalized porosity constant were conducted for all

the soils. Figure 5 demonstrates the performances of the

three models using generalized porosities for Part 1 soils. The

changes of residual pattern vary differently among the models

of ASTM, CRIM, and CRIMP. The residual pattern of ASTM

for the Part 1 soils in Figure 5g changes clearly in compar-

ison with Figure 3d, where the changes mainly occur at the

dry end. For better understanding, the projected errors purely

induced by systematic porosity variation (blue curves) show

an evident downward convex structure. There is no doubt that

the porosity generalization does bring in additional structural

biases and strengthen the residual patterns, whereas the resid-

ual patterns of CRIM in Figure 5h only slightly changes in
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F I G U R E 7 Comparison of the estimated calibration constants of the American Society for Testing and Materials model (ASTM), the complex

refractive index model (CRIM), and a piecewise CRIM model (CRIMP) using variable porosity Φr and generalized porosity constant Φ̄r

comparison with Figure 3g. In light of the segmented dielec-

tric permittivity model of CRIMP, the generalized porosity

constant deviation would also bring in additional structural

bias. Its magnitude is not as significant as ASTM, but it would

slightly modify the residual pattern. Thus, the porosity gener-

alization only exerts a little impact on the residual patterns of

CRIMP in Figure 5i.

The impact of the porosity generalization and its devia-

tion on the model calibration is summarized in Figure 6 for

both Part 1 and Part 2 soils. In general, a generalized porosity

constant around Φ̄r yields the best calibration than the other

deviated values. This is especially evident for the Part 1 soils.

Besides, the standard errors, SEE, of all models increase when

replacing the variable porosity with generalized porosity con-

stant, but their magnitudes are different. The most significant

one is ASTM, where the structural biases MAEs increased by

29 and 36% for the Part 1 and Part 2 soils, respectively. The

relative change of MAEs for CRIM is negligible because the

model is not so sensitive to porosity change.

In general, using the generalized porosity constant Φ̄r
(arithmetic mean of the observed values) is preferred for

all the models. Provided the role of porosity, ASTM is

more susceptible to the porosity generalization than the

other two models for practical application. In contrast,

CRIMP does not show a strong sensitivity to the porosity

generalization.

3.4 Effect of porosity generalization on
model built-in ability

Based on the statistical relations between calibration con-

stants and some basic soil properties, some calibration models

have the built-in ability that estimating these constants from

readily available soil data like soil texture information

(Drnevich et al., 2005; Ponizovsky et al., 1999), but the

built-in ability relies not only on the model adequacy for the

applied soils but also on some implicit preconditions like
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F I G U R E 8 Conceptual illustration of the structural bias caused by

porosity generalization in piecewise complex refractive index (CRIMP)

model calibration. (a) Observed (red) and modeled (black) data curves

for soil dielectric constant and water content; (b) the observed (red) and

generalized (black) porosity over the saturation range; (c) residual curve

between observed and modeled water content

porosity variation addressed in this study. Consequently, the

two approaches accounting for porosity variation would bring

in certain impacts on the calibration constants in comparison

with the ideal case with invariable porosity.

Figure 7 compares the calibration constants estimated from

the two approaches. Generally, the calibration constants of

ASTM and CRIM deviate significantly for most of the inves-

tigated soils, although there is only a relatively small shift in

the calibration constants of CRIMP. We note that some esti-

mated constants (Figures 7c and 7e) marked with blue circles

hit the upper boundary of the parameter setting range in the

optimization. This is mainly attributed to the artifact of opti-

mization due to limited data points. For instance, there are

only two measurement points within the soil water content

range dominated by bound water (Figures 1a and 1b). Over-

all, the comparison demonstrates that the built-in ability of

CRIMP is relatively robust when using generalized porosity

constant for soils with evident porosity variation.

4 IMPLICATIONS FOR PRACTICAL
APPLICATION

For practical application of the dielectric measurement

techniques like TDR and GPR, the dielectric permittivity

model selection is dependent on available information of

field conditions and the user’s requirement of measurement

accuracy. For the laboratory calibration, porosity information

is relatively easy to obtain, whereas the spatial and temporal

information of soil porosity is usually not available for field

application. Besides, it is also hard to keep a consistent

porosity variation between laboratory calibration and field

application. Hence, using a generalized porosity constant,

as a rule of thumb, is preferred. However, the uncertainty

in the generalized porosity constant might be problematic

for the application of the dielectric permittivity models like

ASTM with high sensitivity to porosity. Consequently, this

limits their built-in abilities for the agricultural soils with

systematic porosity variation.

Alternatively, provided models like CRIMP with a “per-

fect” structure for all soils, they are suggested to cope with

the practical problems. Apart from the systematic porosity

variation over the soil water dynamic range, another impor-

tant feature of agricultural soils is the mediate to high clay

and organic matter contents. The illustration of a typical rela-

tionship between dielectric constant and water content for

such a soil is shown in Figure 8. The red line in Figure 8a

is an idealized CRIMP model without random noises intro-

duced into the calibration curve, and the black line stands

for a CRIMP model fitting using a generalized porosity

constant. A theoretical structural bias induced by the sys-

tematic porosity variation is shown in Figure 8c. From the

above experiments for Part 1 and Part 2 soils, we know the

structural bias index MAE is usually rather small. It allows

an excellent accuracy of the measurements in the agricul-

tural soils with systematic porosity variation, even using a

roughly estimated value for the porosity constant in the model

evaluation.

5 CONCLUSIONS

This study investigated the commonly overlooked porosity

variation with the degree of soil water saturation during the

conventional laboratory calibration of TDR dielectric con-

stant measurements. Through comparing with the calibration

using detailed soil porosity information, we evaluated the via-

bility of using a generalized porosity constant in the three

preestablished dielectric permittivity models (ASTM, CRIM,

and CRIMP) with different considerations of porosity. The

findings are summarized as follows.

1. Soil porosity during the calibration experienced notable

systematic variation from dry to nearly saturated and the

pattern depends on the compaction operation and soil tex-

ture. The variation ranges from 0.06 to 0.14.

2. Using a generalized porosity constant would bring in

additional structural bias in comparison with the cal-

ibration using variable porosity, and its magnitude

depends on the model sensitivity to porosity (i.e.,

ASTM > CRIM > CRIMP). Deviation of the generalized

porosity constant can further amplify the structural bias of

ASTM and CRIM for the common soils with low clay con-

tent, but it is insensitive for the soils with high clay content

due to the overwhelming role of model structure error.



PAN ET AL. 13 of 14Vadose Zone Journal

3. Provided a relatively perfect model structure, the calibra-

tion selecting the models like CRIMP can work with a

small standard error of around 0.01 m3 m−3 and a neg-

ligible structural bias, and keep a stable built-in capability

for estimating calibration constants from readily available

soil data.

For practical application in agricultural lands, suitable

model selection and calibration is essential to cope with the

effect of porosity variation on the estimates of water content

from dielectric technique measurements. However, we should

keep in mind that the pattern of soil pore dynamics during

the calibration was formed at the condition of discontinu-

ously wetting of the remolded soil samples in the laboratory.

It may vary differently under natural conditions induced by

routine soil processes such as tillage, wetting–drying cycles,

freezing–thawing cycles, and biological and chemical activi-

ties (Nimmo, 2004). The validity of the above findings needs

to be further tested for field conditions.
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