143 research outputs found

    Mars and frame-dragging: study for a dedicated mission

    Full text link
    In this paper we preliminarily explore the possibility of designing a dedicated satellite-based mission to measure the general relativistic gravitomagnetic Lense-Thirring effect in the gravitational field of Mars. The focus is on the systematic error induced by the multipolar expansion of the areopotential and on possible strategies to reduce it. It turns out that the major sources of bias are the Mars'equatorial radius R and the even zonal harmonics J_L, L = 2,4,6... of the areopotential. An optimal solution, in principle, consists of using two probes at high-altitudes (a\approx 9500-9600 km) and different inclinations, and suitably combining their nodes in order to entirely cancel out the bias due to \delta R. The remaining uncancelled mismodelled terms due to \delta J_L, L = 2,4,6,... would induce a bias \lesssim 1%, according to the present-day MGS95J gravity model, over a wide range of admissible values of the inclinations. The Lense-Thirring out-of-plane shifts of the two probes would amount to about 10 cm yr^-1.Comment: LaTex2e, 16 pages, 5 figures, no tables. To appear in General Relativity and Gravitatio

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe

    Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model

    Get PDF
    We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte

    Lower limit on the neutralino mass in the general MSSM

    Full text link
    We discuss constraints on SUSY models with non-unified gaugino masses and R_P conservation. We derive a lower bound on the neutralino mass combining the direct limits from LEP, the indirect limits from gmuon, bsgamma, Bsmumu and the relic density constraint from WMAP. The lightest neutralino (mneutralino=6GeV) is found in models with a light pseudoscalar with MA<200GeV and a large value for tanÎČtan\beta. Models with heavy pseudoscalars lead to mneutralino>18(29)GeV for tan⁥ÎČ=50(10)\tan\beta=50(10). We show that even a very conservative bound from the muon anomalous magnetic moment can increase the lower bound on the neutralino mass in models with mu<0 and/or large values of tan⁥ÎČ\tan\beta. We then examine the potential of the Tevatron and the direct detection experiments to probe the SUSY models with the lightest neutralinos allowed in the context of light pseudoscalars with high tan⁥ÎČ\tan\beta. We also examine the potential of an e+e- collider of 500GeV to produce SUSY particles in all models with neutralinos lighter than the W. In contrast to the mSUGRA models, observation of at least one sparticle is not always guaranteed.Comment: 37 pages, LateX, 16 figures, paper with higher resolution figures available at http://wwwlapp.in2p3.fr/~boudjema/papers/bound-lsp/bound-lsp.htm

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Single Top Quark at Future Hadron Colliders. Complete Signal and Background Study

    Get PDF
    We perform a detail theoretical study including decays and jet fragmentation of all the important modes of the single top quark production and all basic background processes at the upgraded Tevatron and LHC colliders. Special attention was paid to the complete tree level calculation of the QCD fake background which was not considered in the previous studies. Analysis of the various kinematical distributions for the signal and backgrounds allowed to work out a set of cuts for an efficient background suppression and extraction of the signal. It was shown that the signal to background ratio after optimized cuts could reach about 0.4 at the Tevatron and 1 at the LHC. The remaining after cuts rate of the signal at the LHC for the lepton+jetslepton+jets signature is expected to be about 6.1 pb and will be enough to study the single top physics even during the LHC operation at a low luminosity.Comment: 15 pages, LaTex, 7 figure

    A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.

    Get PDF
    In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA
    • 

    corecore