62 research outputs found

    Bayesian Approaches For Image Restoration

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Frustration induced phases in migrating cell clusters

    Get PDF
    Collective motion of cells is common in many physiological processes, including tissue development, repair, and tumor formation. Recent experiments have shown that certain malignant cancer cells form clusters in a chemoattractant gradient, which display three different phases of motion: translational, rotational, and random. Intriguingly, all three phases are observed simultaneously, with clusters spontaneously switching between these modes of motion. The origin of this behavior is not understood at present, especially the robust appearance of cluster rotations. Guided by experiments on the motion of two-dimensional clusters in-vitro, we developed an agent based model in which the cells form a cohesive cluster due to attractive and alignment interactions but with potentially different behaviors based on their local environment. We find that when cells at the cluster rim are more motile, all three phases of motion coexist, in excellent agreement with the observations. Using the model we can identify that the transitions between different phases are driven by a competition between an ordered rim and a disordered core accompanied by the creation and annihilation of topological defects in the velocity field. The model makes definite predictions regarding the dependence of the motility phase of the cluster on its size and external chemical gradient, which agree with our experimental data. Our results suggest that heterogeneous behavior of individuals, based on local environment, can lead to novel, experimentally observed phases of collective motion.Comment: 14 pages, 5 figure

    Steering cell migration by alternating blebs and actin-rich protrusions.

    Get PDF
    BACKGROUND: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. RESULTS: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. CONCLUSIONS: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.This work was supported by the Max Planck Society, the Medical Research Council UK (core funding to the MRC LMCB), and by grants from the Polish Ministry of Science and Higher Education (454/N-MPG/2009/0) to EKP, the Deutsche Forschungsgemeinschaft (HE 3231/6-1 and PA 1590/1-1) to CPH and EKP, a A*Star JCO career development award (12302FG010) to WY and a Damon Runyon fellowship award to ADM (DRG 2157-12). This work was also supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001317), the UK Medical Research Council (FC001317), and the Wellcome Trust (FC001317) to G

    Quantitative 3D analysis of complex single border cell behaviors in coordinated collective cell migration

    Get PDF
    Understanding the mechanisms of collective cell migration is crucial for cancer metastasis, wound healing and many developmental processes. Imaging a migrating cluster in vivo is feasible, but the quantification of individual cell behaviours remains challenging. We have developed an image analysis toolkit, CCMToolKit, to quantify the Drosophila border cell system. In addition to chaotic motion, previous studies reported that the migrating cells are able to migrate in a highly coordinated pattern. We quantify the rotating and running migration modes in 3D while also observing a range of intermediate behaviours. Running mode is driven by cluster external protrusions. Rotating mode is associated with cluster internal cell extensions that could not be easily characterized. Although the cluster moves slower while rotating, individual cells retain their mobility and are in fact slightly more active than in running mode. We also show that individual cells may exchange positions during migration

    Screening therapeutic EMT blocking agents in a three-dimensional microenvironment

    Get PDF
    Epithelial–mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.Singapore. National Research Foundation (Singapore MIT Alliance for Research and Technology's BioSystems and Micromechanics Inter-Disciplinary Research programme)National University of Singapore (Cancer Science Institute)Singapore. Agency for Science, Technology and ResearchSingapore. Institute of Molecular and Cell Biology (IMCB core funding A*STAR

    Screening therapeutic EMT blocking agents in a three-dimensional microenvironment

    Get PDF
    Epithelial–mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.Singapore. National Research Foundation (Singapore MIT Alliance for Research and Technology's BioSystems and Micromechanics Inter-Disciplinary Research programme)National University of Singapore (Cancer Science Institute)Singapore. Agency for Science, Technology and ResearchSingapore. Institute of Molecular and Cell Biology (IMCB core funding A*STAR

    Loss of α-catenin elicits a cholestatic response and impairs liver regeneration

    Get PDF
    The liver is unique in its capacity to regenerate after injury, during which hepatocytes actively divide and establish cell-cell contacts through cell adhesion complexes. Here, we demonstrate that the loss of α-catenin, a well-established adhesion component, dramatically disrupts liver regeneration. Using a partial hepatectomy model, we show that regenerated livers from α-catenin knockdown mice are grossly larger than control regenerated livers, with an increase in cell size and proliferation. This increased proliferation correlated with increased YAP activation, implicating α-catenin in the Hippo/YAP pathway. Additionally, α-catenin knockdown mice exhibited a phenotype reminiscent of clinical cholestasis, with drastically altered bile canaliculi, elevated levels of bile components and signs of jaundice and inflammation. The disrupted regenerative capacity is a result of actin cytoskeletal disorganisation, leading to a loss of apical microvilli, dilated lumens in the bile canaliculi, and leaky tight junctions. This study illuminates a novel, essential role for α-catenin in liver regeneration

    Endocytic reawakening of motility in jammed epithelia.

    Get PDF
    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination

    Geometric constraints alter cell arrangements within curved epithelial tissues

    Get PDF
    Organ and tissue formation are complex three-dimensional processes involving cell division, growth, migration, and rearrangement, all of which occur within physically constrained regions. However, analyzing such processes in three dimensions in vivo is challenging. Here, we focus on the process of cellularization in the anterior pole of the early Drosophila embryo to explore how cells compete for space under geometric constraints. Using microfluidics combined with fluorescence microscopy, we extract quantitative information on the three-dimensional epithelial cell morphology. We observed a cellular membrane rearrangement in which cells exchange neighbors along the apical-basal axis. Such apical-to-basal neighbor exchanges were observed more frequently in the anterior pole than in the embryo trunk. Furthermore, cells within the anterior pole skewed toward the trunk along their long axis relative to the embryo surface, with maximum skew on the ventral side. We constructed a vertex model for cells in a curved environment. We could reproduce the observed cellular skew in both wild-type embryos and embryos with distorted morphology. Further, such modeling showed that cell rearrangements were more likely in ellipsoidal, compared with cylindrical, geometry. Overall, we demonstrate that geometric constraints can influence three-dimensional cell morphology and packing within epithelial tissues
    corecore