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SUMMARY 

Recovering signals (1-D/2-D) from their degraded and noisy version is generally called digital 

signal/image restoration or reconstruction. Some of the signals themselves contain discontinuities, 

which encode important, crucial and significant information. The removal of the noise and the 

preservation of the discontinuities are conflicting interests. The Bayesian approaches for 

discontinuity identification and edge preserved noise removal in 1-D/2-D digital signals are discussed 

and studied in this dissertation.  

Bayesian model selection is robust, however expensive in calculation due to the “curse of 

dimensionalities”. An approach is proposed in this work to reduce the calculation burden in Bayesian 

model selection. By increasing the model order sequentially according to a confidence level, the 

model order may be determined and evaluating the posterior distribution directly can be avoided. 

Some simplifications of the calculation for the normalization constant make it more efficient. Since 

the model à priori distribution is not uniform, the so-called posterior evidence is suggested for the 

model selection. The simulations proved its robustness and accuracy. 

Bayesian Kernel approach based on sparse kernel learning is presented for both 1-D and 2-D 

discontinuous signal denoising. The image is assumed to be locally piecewise linear. The constructed 

kernel matrix is a hybrid of linear and quadratic in 2-D lattice. The cost function and hyper parameter 

tuning are studied in detail. The presented cost function is proven to only have one global minimum; 

therefore the problem of ill-conditioning is successfully solved. Experimental results show that the 

proposed method is robust and can preserve the discontinuities in its formulation. The proposed 

approach also achieved an excellent restoration results compared with other recent methods, some of 

the errors are much smaller than existing methods when Signal to Noise Ratio (SNR) is low. 

The Bayesian approach for blur identification in the spatial domain is proposed. This approach can 

identify extent of the Point Spread Function (PSF) and its parameter. No assumption is made on the 
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shape of the PSF, so it can be applied for any shape of PSF. The image is decomposed into smooth 

region and edge region. Four linear motion blur PSFs are applied to blur the experimental images, 

thus they are successfully identified by the proposed approach. The assumptions are validated by the 

experimental results. The results also show it is robust and promising in blur identification. 

Finally, the discrete formulation of compact coordinate transformation is presented. Under-sampling 

phenomena are studied and discussed. The constraints of coordinates transform are relaxed in the 

discrete formulation. The optimization of the compactness and a cost function is proposed. The 

experiments and simulations show that the presented method can solve the spatially variant problem 

of rotational blurred image restoration. 
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1 .  C h a p t e r  1  
 
I n t r o d u c t i o n  a n d  L i t e r a t u r e  R e v i e w  

1.1. Introduction 

Vision is a crucial sense for human beings. Combined with other senses, such as tactile, 

acoustical, gustatory, and olfactory, we are able to feel the real world. In the past decades, digital 

cameras have become cheaper and are widely used in our daily life. Digital cameras are also 

applied in many systems in scientific and industrial fields, such as astronomy, geophysics, 

robotics, assembly lines, biomedical application, satellitic investigations and security 

surveillance. These cameras play a crucial function in those systems and applications, just like the 

eyes of human. 

About 44% of human beings have different problems with eyes, such as myopia, hypermetropia, 

askance and astigmatism etc. The imaging systems are not always perfect too, even though they 

are carefully designed, tested and calibrated. For example, Computational Tomography (CT) and 

Magnetic Resonance Imaging (MRI) are widely used in the biomedical research or hospital 

diagnosis, but both are sensitive to the environmental noise and the subjects in question. Some of 

the problems for the imaging system itself are too expensive to resolve and some are impossible 

to be fixed at all, while the images themselves are savable.  

Hubble Telescope is a famous example of image restoration in astronomy. It took five years to 

design and launch it on its 615 km orbit in the sky with cost of about US$1.8 billion for this 

project at that time. Then scientists found the captured images were not as good as expected. 

Finally, they found out that the lens had two micron manufacturing error. It took another three 

years for the engineers to make another set of lens, and then launched a space shuttle to replace 
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them. During those three years, the telescope took thousands of precious photos and most of them 

cannot be taken again. The scientists have to rely on the technology of image restoration to save 

the degraded images.  

Another example is the investigation of the crash of Columbia space shuttle. The crash of the 

space shuttle cost the life of 7 astronauts and billions of US dollars. Without the technology of 

image restoration, it is almost impossible to “see” that it was only a small piece of sponge that 

broke the ceramic layer at the shuttle left wing and thus caused the disaster. 

Cases of imperfections in images are also found in the industries and daily life. In many industrial 

applications, moving, swinging and vibration of the cameras are the main reasons for obtaining 

blurred digital images [1]. Generally, the blurred images are not only degraded by a deterministic 

blurring process, but are also affected by noise. Film grain, electronic noise, quantization error, 

the atmosphere, and the recording medium all might introduce noise into the captured image. 

Noise is a random process, which plays a significant role in image restoration. Image restoration 

cannot be studied only without mentioning the noise, since nearly all the images are degraded by 

noise. 

Generally, image restoration is defined as the problem of recovering an image from its blurred 

or/and noisy rendition for the purpose of improving its quality. Therefore, three kinds of image 

restoration problems are commonly encountered: 

(a). Restore image from its blurred version when Signal to Noise Ratio (SNR) is high; 

(b). Restore image from it noisy version without blurring; 

(c). Restore image from its blurred version with poor SNR; 

When the SNR is high, as in case (a), recovering the blurred image is a relatively easy process, 

which is known as deconvolution. Many methods have been developed to solve this problem. 

[2]~[5] provide extensive overview of those classical deconvolution techniques. More recent 
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methods will be reviewed in the following literature review section. 

The removal of noise from image is an arduous task, as in case (b). This is because images are 

actually discontinuous functions in a regular 2-D array. The discontinuities are important since 

they encode information, such as the boundary of an object.  The removal of noise and 

preservation of the discontinuities are two conflicting interests. Compromises have to be made 

between smoothing and sharpening. The main strategy is to define an estimate on a quantitative 

basis (e.g. a certain criterion or cost function) and to incorporate à priori information and 

constraints about the actual image, such as blur and noise, into the estimation process[3]. This 

strategy is known as regularization in the mathematics literature. 

For a blurred image with poor SNR, as in case (c), there are basically two approaches to handle it. 

The first method is to remove the noise and then treat the problem as a case (a) problem. The 

second method is to balance the noise removal term and blurring removal term within one cost 

function as suggested by Miller [6].  

Image restoration is well known to be a typical example of ill-posed inverse problem. This 

implies that the solution may not be unique or may not exist at all. From a mathematical point of 

view, therefore, image restoration is a regularization process in which a well-defined estimate of 

the actual image is determined from the degraded image using à priori information and the 

constraints. Often, à priori information about the image, the blur, and the noise are not readily 

available. It is thereafter necessary to identify these parameters too. In consequence, the process 

of restoring an image has two stages: identification and restoration. 

Identification is a process that identifies all the necessary information needed in the restoration. 

This information generally includes the Point Spread Function (PSF) and the variance of the noise. 

In some industrial applications, parameters of the blurring could be well defined. The important 

parameters are available to describe the blurring process, such as the motion function of the 

camera, the distance between the objects and the camera, the frequency of the camera 
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vibration/motion speed and exposure time of the camera. In this case, the PSF of the blurring 

process could be determined analytically. However, these parameters are often not available or 

difficult to obtain in many industrial applications. There are two reasons:  

  Some parameters are not stable in the imaging system and it would be difficult to estimate 

them accurately. Some of the parameters could be measured by adding sophisticated 

instruments, but it will make the system more complicated and expensive. 

 In some situations, the blurred images are not reproducible, and not all the parameters are 

readily available. 

Many scientists and engineers are more interested in identifying the blurring based on the blurred 

image itself only, which is called blind blur identification. The only available information for the 

identification task is the blurred image itself. 

Strictly speaking, it is impossible to estimate the noise, since it is a random process. What we can 

estimate are the statistical parameters, such as mean and variance. Noise in the image model is 

normally assumed to be identical and independent distributed (i.i.d.) Gaussian noise, then the 

variance and mean will be sufficient to describe the noise term. The degraded image can be 

considered to be the convolution of the original image and PSF in spatial domain, with additive 

i.i.d. Gaussian noise. Thereafter, the restoration procedure is the inverse operation of the above 

procedure.  

The problem of rotational blur is more complicated. This is because in the case of linear motion 

blur, the problem on identification and restoration is spatially invariant, while it becomes a 

spatially variant problem in the case of rotational blur. When the problem is spatially variant, 

using traditional methods to describe the nature of the problem is not feasible. It is impossible to 

use different PSFs to describe every pixel in the image. Thereafter, a new formulation is needed 

to solve the problem of rotational blur identification and restoration. 
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1.2. Objectives 

The main objective of this work is to develop an efficient and novel image restoration method to 

restore blur images. The causes of blur are very different, each of which presents a different 

challenge, and hence have to be tackled separately. In this dissertation specifically, an approach 

that is able to restore images blurred due to rotational motion of the camera will be developed. 

The procedures are summarized in Figure 1.1.  

 

Figure 1.1 The Procedure of Image Restoration 

The main steps after a blurred image has been captured are: 

1. Noise removal. 

2. Checking whether blurred image is caused by rotational motion?  
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   If rotational blur → carry out polar transformation;  

   Else go to step 3. 

3. Blur Identification 

4. Deblurring → Deconvolution 

   If rotational blur → carry on inverse polar transformation;  

   Else go to step 5. 

5. Presentation of the final restored image. 

As image restoration comprises the above steps, each of which must be treated separately, before 

putting them together to form a cohesive whole. At this juncture, it would be necessary to spell 

out the objectives and approaches to be adopted in this work.  

Noise Removal 

It is well know that de-noising is an important issue in image restoration since it is an ill-

conditioned problem. One of the reasons is that the noise will be easily amplified during filtering, 

such as high-pass filter for edge detection. The usual proposed cost functions for de-noising are 

non-convex, which is easily affected adversely by small variation in noise properties. This is 

highly undesirable. In this work, a convex cost function is proposed such that the problem will be 

solved by looking for a single global minimum. Therefore the problem becomes a well-posed 

problem. 

Rotational Blur  

There are cases where an image is blurred due to the rotation of the camera and/or the object in 

question. In this case, a rotational blurred image will be observed. The handling of rotationally 

blurred images is a complex spatially variant problem, which is very difficult to solve in practice. 

This is because the properties of the blur vary across the image, i.e. each pixel would exhibit 

different Point Spread Function (PSF). In this dissertation, a Compact Discrete Polar 

Transformation and its inverse are developed. With this transformation, the spatially variant 
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problem can be changed into a spatially invariant one. The restoration processing is done in the 

new transformed coordinates. The concept of compactness will be proposed. A significant 

advantage of the proposed novel approach in coordinates transformation is that the image is still 

uniformly sampled in the new polar coordinates, therefore, the existing image identification and 

restoration approaches can be easily implemented. 

Blur Identification and Image Restoration 

Blur identification is a crucial step in image restoration. The main aim is to identify the properties 

of blur, represented by PSF. Edge or discontinuity identification is useful and helps in blur 

identification. In this dissertation, both discontinuity identification and discontinuous 

functions/signals estimation based on Bayesian approach will be studied. An efficient edge 

identification based on Bayesian inference for the 1-D piecewise constant signal will be 

presented. Thereafter, a novel image restoration algorithm based on the Bayesian sparse kernel 

approach is proposed. This formulation guarantees the preservation of both step edges and roof 

edges in the restored images. 

Importance of Noise Removal 

Probably, the most basic (fundamental) image restoration problem is de-noising while preserving 

the image structure [7], such as the edges. The main emphasis of the methodology developed in 

this work is on the robust noise removal, with which, the blur, represented by PSF, will be 

identified correctly. If the image is rotationally blurred, it will be transformed to a new Polar 

coordinates for blur removal.  

The basic reasons why edge preserved robust noise removal is so important and main concerns in 

this work, are: 

 Noise is an important issue in image restoration. It will be easily amplified in the 

process of deconvolution. But, with an image of better quality, the deconvolution 
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procedure will become much easier. 

 Noise removal will make the blur identification easier, since most of the existing blur 

identification methods are sensitive to noise. The original contents of the image when 

removing the noise must be preserved as far as possible, which makes the noise 

removal more challenging. 

In the ensuing chapters, the fulfilment of the aforesaid objectives will be discussed in detail. 

1.3. Literature Review 

Two methodologies are popular in the field of image restoration, known as frequency approaches 

and stochastic approaches. Both of them have a long history from about 1970, or earlier. The 

former is based on spatial-frequency analysis. It applies Fourier transform, wavelet and filter 

design under this framework. The frequency approaches are faster and hence suitable for blurred 

image with high SNR (case a). However, when the SNR is low, most of them cannot yield 

satisfactory results. The stochastic approaches apply the correlation analysis, Markov random 

field and Bayesian inference based on à priori knowledge of the distribution of the variables. 

Stochastic approaches are robust and thus suitable for degraded images containing only noise 

(case b) or blurred image with low SNR (case c), since the noise is also included in the model. 

However, these approaches are computationally intensive and relatively slow.  

A broad literature review is presented in this section, which will not be limited to the approaches 

in the image processing community. The related achievements in other fields are also included, 

such as applied statistics, machine learning, etc. Many efforts are trying to make the review as 

comprehensive as possible, however, due to the relatively large scope, it is limited only to those 

more relevant literatures. Some reviews of the previous works are also included in the individual 

chapters for their relevance and for easy comparisons. 
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1.3.1. Image Identification 

Image identification is an indispensable step in image restoration. It provides necessary 

information for image restoration. Typically, the PSF and the noise variance are estimated at this 

stage. It is also called as blur identification in some other literatures. 

Probably the most straightforward way to obtain the PSF of an image formation system is to 

make use of an analytic description of the system [1]. Unfortunately, in most of the practical 

applications, it is not always possible, because all the parameters are not readily known as stated 

in the last section. Another solution is to record an original image with known pattern, e.g. an 

impulse or an edge, for several times. Then the PSF can be obtained from the observations [5]. In 

fact, this method can be regarded as the solution of the classical system identification problem, 

where the response of a linear system is identified given its input and output. However, such an 

approach is rarely applied in blur identification because of the instability of the system and the 

associated environment.  

A more practical approach assumes that certain patterns in the observed blurred image are à 

priori known [8]. However, since this method does not account for the noise in the observed 

image, small deviations between the assumed idealized pattern and the actual (unknown) pattern 

in the original image give rise to large deviations in the PSF identified in this way. 

In the past decades, many scientists and engineers concentrated on blind blur identification. A 

number of advanced methods have been proposed. A successful approach towards image 

identification is from Stockham et al. [9] and Cannon [10]. Their spectral and cepstral methods 

concentrate on the PSF whose Fourier transform has a regular pattern of zero-crossings. This 

algorithm is based on inspection of the noisy and blurred image, using the fact that the frequency 

responses of some blurs have regular zero-crossings that determine the extent of the PSF [3]. 

Although these methods are still commonly used today for identification of blurs such as uniform 

motion blur and out-of-focus blur, PSFs which do not have zeros in their Fourier magnitude, such 
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as atmospheric turbulence [11], cannot be identified by these classical methods. Another 

deficiency of these methods is that the estimation of the location of the zero-crossings or the 

peaks is somewhat arbitrary, since it depends on eyes. Furthermore, this method is also sensitive 

to noise. When the SNR is low, acceptable results cannot always be obtained. This is because the 

presence of noise will mask the zero-crossing locations in the spectrum. These methods can only 

identify the extent of the PSF, but cannot determine the parameters of the PSF. 

The PSF estimation is selected to provide the best match between the restoration residual power 

spectrum and its expected value, derived under the assumption that the candidate PSF is equal to 

the true PSF in [12]. The à priori knowledge required is the noise variance and the original image 

spectrum. A blind blur identification and order determination scheme is presented in [13]. With 

the blurs satisfying a given condition, the authors establish the existence and uniqueness of the 

result, which guarantees that single-input/multiple-output blurred images can be restored blindly, 

though perfectly in the absence of noise, using linear FIR filters. Results of simulations 

employing the blind order determination, blind blur identification, and blind image restoration 

algorithms are presented in their paper. In images with low SNR, indirect image restoration 

performs well while the direct restoration results vary with the delay but improve with larger 

equalizer orders. 

The statistical approaches are robust since it includes the noise in the model. Model-based least 

square error and maximum likelihood (ML) blur identification methods have been proposed for 

the identification of the general symmetric PSF of finite extent. Various implementations of the 

ML estimator have been discussed [11]~[17]. These blur identification methods have the 

following advantages [11]:  

 i). They are criterion-based;  

 ii). They can identify a lager class of blurs;  
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 iii). They can incorporate the presence of observation noise in the estimation.  

Although ML identification enjoys the abovementioned theoretical advantages, the methods have 

not been applied widely in practice due to some shortcomings. Firstly, in most of the ML 

algorithms, the Auto Regressive (AR) model is assumed to be the image model. If this model 

does not fit the image, it does not produce reliable results. The Probability Density Functions 

(PDF) is assumed to be Gaussian distribution in most of the ML algorithms. The Likelihood 

Function (LF) to be maximized is highly nonlinear with respect to the unknown parameters. It 

requires the use of numerical optimization [11]. However, since the Likelihood Functions may 

contain several local maxima, convergence to the global maximum cannot be guaranteed [11]. 

The assumption of the symmetry of PSF makes this method unsuitable to the problems in which 

the PSF is non-symmetrical, such as accelerated motion blurs. Some important works of the blur 

identification, as well as image restoration, include Generalized Cross Validation (GCV)[18], 

Vector Quantizer (VQ) [19] ~ [20] and regularization approaches[21] ~ [22]. Other methods 

could be found in [23] ~ [25]. 

Besides the PSF, noise variance is also an important issue in image identification. Many blur 

identification methods, which are based on statistical models, can give a good estimation of the 

noise variance simultaneously. The estimation of the noise variance itself will relatively easier. 

The most straightforward way is the Wiener filter [26] [27], which possesses adaptive characters. 

Wavelet approaches are also popular and some newly developed methods are presented in [28] ~ 

[31]. 

1.3.2. Image Restoration  

Image restoration has been extensively studied for its obvious practical importance as well as its 

theoretical interest. Literature on the subject is abundant and highly varied since the problem 

arises in almost every branch of engineering and applied physics. Most existing image restoration 

methods have a common estimation structure in spite of their apparent variety. Everything could 
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be summed up in a single word: regularization [3]. Generally, the image restoration methods 

could be classified into two general categories according to the difference in regularization. The 

first category is called Criterion-based methods. The central idea of these methods is that the 

solution is defined to be the image that satisfies a predetermined optimality criterion. Based on 

different criteria, the methods are classified as [4]: Minimum-norm least squares, Linear 

Minimum Mean Square (LMSE) error, and Maximum à posteriori probability (MAP). The 

second category is called Constrained-optimization methods. These methods optimize an 

optimality criterion subject to constraints on the solution. The constraints and the criteria reflect 

the à priori information about the ideal image. According to these constraints, these methods are 

[4]: Constrained least squares, Miller regulation, Maximum entropy, etc. Both Criterion-based 

methods and Constrained-optimization methods can be implemented in frequency domain and 

spatial domain. Normally, it was called deconvolution techniques. Many scientists and engineers 

have been partial to the statistical Bayesian inference in the past decades due to its robustness to 

noise. It is strongly related to a branch of statistics called function regression. Function regression 

is a classical statistical problem, which has existed more than 100 years. It provides tools for 

estimating functions, curves, or surfaces from the degraded and noisy data.  

Julian Besag presented an excellent fundamental way to treat image restoration problem 

statistically in both regular and irregular lattices [32]. The Hammersley-Clifford theory was 

proved. From then on, the Markov Random Field (MRF) model became popular in image 

processing. However, due to high computational load, it developed relatively slowly in practice 

for decades. With the rapid development of computer technology and efficient algorithms, many 

related papers about the Bayesian Image processing have been published in the past 15 years. 

S. Geman and D. Geman contributed their idea of “line process”, also known as the Gibbs 

sampler, which is a typical treatment of discontinuities in image processing [33]. Thereafter, the 

Gibbs sampler became popular not only in image processing tasks, but is also applied in many 
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other fields.  

Bouman provided a Maximum à posteriori (MAP) model [34], which allows realistic edge 

modeling while promising stable solutions. Bouman argues that a non-convex cost function will 

cause the estimation to be ill-conditioned. Therefore in order to obtain a stable estimation, a 

convex cost function is preferred. Similar study about the convexity of the cost function appeals 

to other researchers due to its practical significance [35] ~ [37]. The idea of using a non-standard 

norm function as the cost function is presented in [34], so that the discontinuities in the signal will 

not be over-penalized and the edge could be preserved. According to the simulation, when the 

norm is between 1 and 2, say ||.||1~2, the MAP estimation is guaranteed to be a continuous function 

of the input data, while slow convergence of the MAP estimation may occur in practice [34]. A 

systematic study on the existing cost functions in the Bayesian frameworks was also discussed. 

Some other researchers presented other different ideas about limiting the penalty of local 

differences at a prescribed threshold [38] [39].  

Stephens introduced a Bayesian retrospective multi change-points identification algorithm [40].  

Gibbs sampler is applied to relieve the computational efforts. By applying it on three real data 

sets, it is shown that this method is able to identify the discontinuous points in the data sequence.  

A Bayesian curve fitting to deal with the signals of piecewise polynomials characteristics is 

proposed by Denison et al. in [41]. The reversible jump Markov Chain Monte Carlo (MCMC) 

method [42] is applied to calculate the joint posterior distribution. In the reversible jump MCMC 

[42], the Gibbs sampler could jump between the state spaces of different dimensionalities 

according to preset conditions. Denison’s formulation [41] has been successful in giving good 

estimation for smooth function, say continuous and differentiable, as well as functions which are 

not differentiable and perhaps even not continuous, at a finite number of points. The detailed 

pseudo code and procedure of the algorithm are also provided.  

Molina et al. presented the Bayesian image restoration for blurred images[43]. They follow the 
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Gemans’ line process concept using the Compound Gauss-Markov Random Field. Both 

stochastic and deterministic relaxations are considered. It also provided the basis of applying the 

Simulated Annealing (SA) and Iterative Conditional Mode (ICM) in the deblurring problem of 

image processing. The convergences of the two iterative algorithms are proven theoretically and 

tested by synthetic and real blurred images. 

Two important image models for the problem of image restoration are introduced in [44], which 

are Piecewise Image Model (PIM) and Local Image Model (LIM). PIM also includes the 

Piecewise Constant (PICO) and Piecewise Linear (PILI). LIM includes the Local Lonotonicity 

(LOMO) and Local Convexity/Concavity (LOCO). The corresponding regularization functions 

for different image models are given. The author provided a cross-validation approach to select 

the proper regularization parameter to compromise between noise removal and edge sharpening. 

The approach can be used to select the proper image model. The experimental results gave the 

comparison of their method and other parameter selection method. Similar problems are 

discussed in [45] and [46]. Although the author starts from a MRF point of view for the image 

restoration, the final cost function is very similar to the PIM and LIM in [44]. A Bayesian 

estimation of the regularization parameter is given and sampling problem from the posterior 

distribution is analyzed in [45]. In [46], a Generalized Stochastic Gradient (GSG) algorithm with 

a fast sampling technique is devised aiming to achieve simultaneous Hyper-parameter estimation 

and pixel restoration. Image restoration performances of Posterior Mean performed during GSG 

convergence and of Simulated Annealing performed after GSG convergence are compared 

experimentally. 

A novel non-parametric regression method was proposed in [47]. The approach is based on the 

Local Polynomial Approximation (LPA). The Intersecting Confidence Intervals (ICI) method 

[48] is applied to define the adaptive varying scales (window size) of LPA estimation. The ICI 

algorithm will give a varying scale adaptive estimate defining a single best scale for each pixel. 
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Since the FFT is applied to the convolution, the speed of the method is fast.  The LPA-ICI 

approach could be viewed as the selection of the weights for each pixel according to different 

window size. This approach can achieve the best performance among the approaches which can 

be found in all the reviewed literature.  

Besides the Bayesian methodology, Thomas introduced an automatic smoothing method for 

recovering discontinuous regression functions [49]. Three different criteria are derived from three 

fundamentally different model select methods: Akaike’s Information Criterion (AIC) [50], 

Generalized Cross-Validation (GCV) [51] and the Minimum Description Length (MDL) [52]. A 

modified genetic algorithm is applied for the practical optimization. This paper is under the 

framework of spine methodology and the three above criteria are also not based on Bayesian rule, 

while in the experimental works and simulation, these methods yield sound results. It gives us an 

overview of those non-Bayesian based methods in discontinuous function regression in the past 

ten years. 

Recovering an image from its noisy version is actually a 2-D discontinuous function regression 

problem. Function regression for the discontinuous function is relatively new compared to 

continuous function regression. It was also called jump analysis or change point analysis in some 

other literatures. Two related topics are included in this field: discontinuity identification and 

discontinuous function estimation. Discontinuity identification is to identify the positions of 

discontinuities in the given functions/signals, such as the edge detection and the change point 

analysis. In those applications, the localities of the discontinuities will furnish sufficient 

information. Discontinuous function estimation focuses on good estimation for the given 

discontinuous functions/signals. Two approaches are both active in discontinuous function 

estimation. Some authors treat the functions in the sub-intervals separated by the identified 

discontinuous points as a continuous function regression problem; alternatively others remove the 

discontinuities in the functions first and then consider the entire function as a conventional 
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continuous function regression problem. 

In the statistical community, the similar problem of noise removal attracted many scientists too. 

Conventional function regression methods work well in the estimation of the continuous function, 

while those estimators can not deal with the signals/images in the presence of discontinuities. 

From the statistical point of view, they can not converge to the true discontinuous points. Many 

real applications in image processing frequently involve those discontinuous points, such as edge 

detection. The kernel method became popular and active in the past decades in both function 

regression and classification. It provides an important tool for image restoration. The Nadaraya-

Watson kernel was presented by Nadaraya [53] and Watson [54] separately. It was initially 

designed for the continuous function problem, while it was modified for the discontinuous 

function problem later. Some similar kernel methods appeared, such as those presented by 

Priestley and Chao [55], Gasser and Muller [56], Cheng and Lin [57]. Some other algorithms 

were also proposed, such as Difference Kernel Estimation (DKE) [58] ~ [59], Difference of two 

one-sided Local linear Kernel estimator [58]. These methods could be categorized as local kernel 

methods, since they only deal with the local information of the given signal according to the 

given bandwidth.  The bandwidth of the local kernel, e.g. the width of the kernel window, has a 

significant impact on the results. Many researchers suggested different criteria on how to select a 

proper bandwidth, such as the General Cross-Validation (GCV) [60], Cp criterion[61] and the 

Least Square Error (LSE) criterion [62] ~ [63]. 

Since its introduction in a classical paper by Rudin, Osher and Fatemi [64], Total Variation (TV) 

minimizing models have become one of the most popular and active methods for image 

restoration. TV based regularization is a typical case of geometry-driven diffusion for image 

restoration. A reliable and efficient computational algorithm for image restoration is proposed in 

[65]. A piecewise linear function (a measure of total variation) is minimized subject to a 2-norm 

inequality constraint (a measure of data fit) for discrete image. The blur is removed first by 
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finding a feasible point for the inequality constraint. Noise and other artifacts are then removed 

by subsequent total variation minimization. Y. L. You, et al. presented an anisotropic 

regularization to exploit the piecewise smoothness of the image and the PSF [66]. This method is 

derived from anisotropic diffusion and adapts both the degree and direction of regularization to 

spatial activities and orientations of the image and PSF. TV is used as a constraint in a general 

convex programming framework in [67]. David, et al. discuss about how to choose a proper 

regularization parameter in the unconstraint TV formulation to determine the balance between the 

goodness of fit to the original data and the amount of regularization to be done to the images [68]. 

T.F. Chan, et al. presented a good overview on the development of the TV method in image 

restoration in the passed 15 years in [7]. Other algorithms for the TV method in image restoration 

can be found in [69] ~ [75]. 

Many other approaches are also proposed in image restoration focusing on different aspects, such 

as robust noise removal [76] ~ [79], edge preserved denoising [80] ~ [87], and ring artifacts [88] 

~ [91], etc.  

1.4. Contributions and Organization of the Dissertation  

In this dissertation, image restoration problem is studied in the framework of stochastic 

approaches. 

Mathematical models of image, blurring and noise will be provided in Chapter 2. In this Chapter, 

the General Linear Model (GLM) and kernel learning are introduced for the task of image 

restoration. Markov Chain (MC) and Markov Random Field (MRF) models of 1-D signal and 2-

D image are discussed. Bayesian inference of the above model is briefly reviewed. Chapter 2 

ends with the definitions on the fidelity criteria of image quality. They will be used to evaluate 

the results of restored images. 

Chapter 3 presents the identification of discontinuities in 1-D piecewise constant signal based on 
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Markov Chain and Bayesian Inference. The à priori distribution of models parameters and 

regularization strategy are discussed. An efficient edge detection algorithm for 1-D piecewise 

constant signal is provided. The proposed method can avoid the direct evaluation of marginal 

likelihood function in a high dimensional space. The posterior evidence is suggested for the 

model selection. Then the experimental results are presented to verify its robustness and accuracy.  

The formulation of the Relevance Vector Machine is presented at the beginning of Chapter 4. The 

mathematical model of the piecewise linear signal are then presented. Based on this model, the 

scaled linear kernel is proposed as the kernel function. Thereafter, the given formulation is 

applied for the 1-D discontinuous function regressions. The discontinuities/edges can be 

preserved in the restored signals. The identification of the discontinuities is successful and the 

fitness of the data is excellent according to the experimental results. 

The Relevance Vector Machine (RVM) and Sparse Probabilistic Linear Model are generalized to 

image restoration tasks in Chapter 5. The advantages and limitations of RVM and its solution are 

discussed. Some important issues, such as the kernel function and the tuning of the hyper-

parameter are studied. The cost function of the global optimization is presented. The proposed 

cost function has only one global minimum, such that the ill-conditioned problem becomes well-

posed. The experimental results are compared with other existing methods at the end of Chapter 5 

and excellent performance has been achieved. 

Chapter 6 presents a formulation of the blind blur identification in spatial domain based on the 

piecewise constant assumptions. The image is divided into edge region and smooth region. It is 

actually ML estimation of the PSF. Both the extent and the parameter of the PSF can be thus 

accurately determined. Since no assumption is made on the shape of the PSF, it can be used to 

identify the PSF of any shape. The proposed identification algorithm is proved to be robust by the 

experimental results.  

Chapter 7 proposes an innovative Compact Discrete Polar Coordinates Transform for the 
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identification and restoration of rotational motion blurred image. A relaxed formulation of the 

transform function and its inverse is presented. Based on the analysis and assumptions, the linear 

interpolation is applied in the Polar domain to solve the problem of under-sampling. The cost 

function of the compactness is introduced. Experimental results shows that this transformation 

can successfully convert the rotational motion blur problem to a spatially invariant problem. 

Finally, the conclusion is presented in Chapter 8.  
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2 .  C h a p t e r  2  
 
M a t h e m a t i c a l  M o d e l  f o r  I m a g e ,  N o i s e  a n d  
B l u r r i n g  P r o c e s s  

In this Chapter, the mathematical representation of image, noise, blurring process and all the 

associated quantities are presented. These models, which will be used extensively in this 

dissertation later, will allow us to understand and resolve the intended problems, using available 

mathematical tools.  

2.1. Image and Image Representation 

Mathematically, an image is a function of two dimensions with specified characteristics. Some 

images need to be processed in order to improve their quality for better human or automatic 

machine interpretation. The process is commonly known as image restoration technology. 

In this work, only monochrome scene of the nature will be discussed, which can be expressed by 

a bivariate function f(x, y) {

� 

!" < (x,y) < "}, where (x, y) denotes the spatial location in the 

image. An image is only a part of such function f(x, y), since imaging device is normally spatially 

limited. For example, the lens has limited zoom and depth, and the CCD matrix cannot be infinite. 

Thereafter, the image becomes f(x, y) {(x, y)∈ !

� 

!  

� 

R
2}, where !={0

� 

! x

� 

!X, 0

� 

! y

� 

!Y} is the 

support of the image. The function f(x, y) is often called the image intensity function. For 

computers to handle an image, ranging from image storage in the hard disk to image processing 

with some computer software, the image needs to be digitized beforehand in both spatial location 

and with the associated brightness values. Theoretically, a continuous image could be digitized in 

the spatial domain by the δ function. This is the functionality of the so-called digitizer device in 

camera or scanner. Every point, say (i, j), is a pixel. The digitized value of the function f at pixel 
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(i, j) is also known as the gray level. This digital image of size N by M is then denoted by f(i, j) 

{(i ,j)∈ !

� 

!  

� 

Z
2}, where !={0

� 

! i

� 

!N, 0

� 

! j

� 

!M}. The number of pixels of a digital photo is 

commonly referred to as image resolution. For example, the above image is of size N×M. Another 

common definition of the resolution of a digital image is the Dots Per Inch (DPI). More details of 

sampling theory and digitization of image can be found in most image processing textbooks, such 

as [1][2][5]. In this dissertation, unless otherwise specified, all images mentioned refer to 

monochrome digital images. 

A noisy image can be considered to consist of the original image f(i, j) and the noise en(i, j). 

Expressed mathematically, the noisy and degraded version g(i, j) of the original image f(i, j) is 

given by: 

( , ) ( , ) ( , )    {1 ,1 }ng i j f i j e i j i N j M= + ! ! ! !  (2.1) 

Eq. (2.1) is a typical noisy image model. The major goal of image restoration is to estimate f (i, j) 

based on the observed data g(i, j). 

When quick motion is involved, the image regions are illuminated only in a partial integral of 

time interval in the blurring process. The intensity (or gray level value) is not only decided by the 

region being sampled, but it is also influenced by the adjacent regions based on the given PSF. 

Furthermore, the noise is inevitable. In this way, the noisy blurred image in the continuous 

domain could be modeled by: 

( , ) ( , ) ( , , , ) ( , ) {( , ) }
d

ng x y f d x y d d e x y x y! " ! " ! "
#

= + $#%%  (2.2) 

where g(x, y) is the observed noisy blurred image;  

f(x, y)is the original image; 

d(x, α, y, β) is the PSF; 
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d
!  is the support of the PSF, which is often considerably smaller than !; 

en is the noise term, which is often independent from the image. The noise is assumed to 

be a zero-mean homogeneous Gaussian distributed white noise process with zero mean 

and unknown variance 2

n
! . 

When the PSF is spatial invariant, Eq. (2.2) could be simplified as: 

( , ) ( , ) ( , ) ( , ) {( , ) }
d

ng x y f d x y d d e x y x y! " ! " ! "
#

= $ $ + %#&&   (2.3) 

In discrete formulation, Eq. (2.3) could be written as: 

( , )

( , ) ( , ) ( , ) ( , ) {( , ) }
d

n

k l

g i j d k l f i k j l e i j i j
!"

= # # + !"$  (2.4) 

The observed blurred image in Eq. (2.4) is actually the convolution of the PSF and the original 

image with the additive i.i.d. noise. In image processing literature, the above expression could be 

represented in a concise way: 

ng d f e= ! +   (2.5) 

where ! denotes the convolution operator. Since the convolution operation in the spatial domain 

will be the multiplication operation in the frequency domain, some researchers prefer to express 

the model in frequency domain: 

( , ) ( , ) ( , ) ( , )
n

G v u D v u F v u E v u= ! +  (2.6) 

where G(v, u), D(v, u), F(v, u) and En(v, u) are the Fast Fourier Transform (FFT) of g(i, j), d(i, j), 

f(i, j) and en(i, j), respectively. The technique of determining the inverse of the above blurring 

procedure is known as deconvolution.  

The above mathematical expressions shown in Eq. (2.1) ~ Eq. (2.6) of image are simple, but not 
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all the 2-D functions are eligible to represent an meaningful image. Most of the images are not 

continuous and have piecewise characteristics. In image processing, positions, at which the image 

intensity function f has “jumps”, are called step edges and positions at which the first-order 

derivatives of f have “jumps” are called roof edge. They will be discussed in Chapter 3 in detail. 

Due to the existence of such discontinuities, the image restoration task is more challenging. The 

removal of the noise (smoothing) and preservation of the discontinuities (sharpening) are 

conflicting interests. Compromise between the sharpening and smoothing must be achieved to 

keep the discontinuities. This is also known as “Edge Preserved Noise Removal”.  

At this juncture, the support of the image and the PSF should be defined. The support of a 

function/image is the region of interest within a coordinate system. The region outside of the 

support is either undefined or unsampled. The coordinate system and the support of the image are 

shown in Figure 2.1. Different coordinate systems could be used for sampling and digitization. In 

this dissertation, both the image and the PSF are in Cartesian coordinates with uniform sampling 

interval in 2-D array. It is also known as the regular lattice. Some types of blurring PSF could be 

described by a vector, such as the linear motion PSF.  

 

Figure 2.1 The Coordinates System and the Support of the Image 
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In some applications, other types of noise could be more appropriate, such as Laplace noise for 

electrical noise. In this work, it is assumed that the noise is Gaussian distributed since it is the 

most commonly used noise model in image processing. Theoretically, it is impossible to 

completely and accurately describe such random process. However it could be represented by its 

statistical parameters, such as the mean and the variance. Due to the i.i.d. assumption defined 

above, the noise will have covariance matrix 2
Q I!= , where I is an NM×NM identical matrix 

with all the diagonal elements equal to 1. 

2.2. General Linear Model and Kernel Trick 

In this section, an extremely important model used in image representation will be discussed due 

to its wide applications. This model will be used extensively in Chapter 4 and Chapter 5. Any 

data which may be described in terms of a linear combination of basis functions with an additive 

Gaussian noise component satisfies the General Linear Model (GLM), also known as the General 

Additive Model. Hastie and Tibshirani [92] gave an excellent summary on this topic. One of the 

most successful GLM is the Support Vector Machine (SVM). This model is also well defined and 

discussed in the literature of neural networks and machine learning [93] ~ [96]. Due to its success 

in many fields, such as the gene study, classification and function regression, SVM is well 

developed in the past 20 years. Some Bayesian treatments for the SVM are proposed recently, 

such as [97].  

Generally, the GLM is described by a linear combination of a set of basis/kernel functions 

( ', )k k! . In image processing, the image f could be modeled by: 

1

( ; ) ( ', )
NM

k

k

f k w k k w!
=

="
v

 (2.7) 

where wk is the weight for different basis functions. Thereafter the observed image g will be: 
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1

( ; ) ( ', ) ( )
NM

k n

k

g k w k k w e k!
=

= +"
v

 (2.8) 

The image is re-arranged into a column vector by line scanning scheme. ( ', )k k!  is known the 

basis function, and also called as the kernel function in kernel machine learning. More concisely, 

the above expression can be written as: 

=
v v
f Kw   (2.9) 

and  

= +
v v v
g Kw e   (2.10) 

where K is the Kernel matrix, with elements ( ', )k k! .  

 
(a). Quadratic Kernel Function                           (b). Linear Kernel Function 

Figure 2.2 Quadratic and Linear Kernel Function 

GLM provides many theoretical conveniences in both theoretical inference and practical 

numerical calculation. The discontinuities in the image introduce the non-linearity into the image 

model.  The expressions in Eq. (2.9) and (2.10) are linear; however the non-linearity could be 

encoded into the model by the non-linear kernel function. The nonlinear kernel function maps the 

variables into a new hyperspace. In this hyperspace, the model could have a linear expression. 

This is known as the kernel trick to treat the nonlinearity by a linear expression. Basis functions 

need to satisfy the following three conditions: 
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1. Symmetry : ( ', )k k! = ( , ')k k! , 'k k!  

2. Non-negativity: ( ', ) 0k k      k! " #  

3. Cauchy-Schwarz Inequality: 2[ ( ', )] ( , ) ( ', ')k k k k k k    ! ! !" , 'k k!  

Many functions satisfy the above conditions, such as the Inhomogeneous Polynomial kernel 

function, Homogeneous Polynomial kernel function, Gaussian Kernel function, Sigmoid Kernel 

function, etc. The Quadratic Kernel and the Linear Kernel are shown in Figure 2.2. 

2.3. Definition of  Discontinuity 

In many image processing works, such as enhancement, recognition, restoration, etc. 

discontinuities play an important role in providing necessary key information for the task. In this 

work, we shall begin the formulation of 1-D signal for ease and clarity in presentation. The model 

presented here shall be further discussed in Chapter 3~5.  

Many mathematicians prefer to define the continuity of a function via a so-called epsilon-delta 

definition, while a simpler description is given here. The given function is f: X→Y (X and Y! R ), 

where the pre-image of every open set in Y is open in X. More concretely, a function f(x) of a 

single variable is said to be continuous at point xo if the following relation holds: 

0 0

0lim ( ) lim ( ) ( )
x x x x

f x f x f x
+ !

" "

= =

  (2.11) 

where f(x0) < ∞. f(x0) is defined in the domain of f. If ! xo∈ X satisfy Eq. (2.11), function f(x) is 

continuous in its entire defined space X. If f(x) is infinitely differentiable, it could be written 

according to the Taylor expansion: 

( )

2 ( )
( ) ( ) '( )( ) ''( )( ) .... ( ) ....

!

n

no

o o o o o o

f x
f x f x f x x x f x x x x x

n
= + ! + ! ! +  (2.12) 

In many practical tasks, only the lower order derivatives in Eq. (2.12) are significant and 
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important. When the function is continuous at point xo, it means that function f(x) is at least 

second order differentiable at point x0. A function f(x) is continuous at point x0 if it satisfies Eq. 

(2.11) and its second order derivative is also differentiable at the entire space in question. 

Removal of noise from such function is not difficult, the SVM approaches and other local kernel 

methods can successfully handle this task. In this work, some of the points of function f(x) will 

not satisfy Eq. (2.11), because at these points, the first order derivative of the function does not 

exist, and are hence not continuous at those points. Since the discontinuities in the higher order 

derivatives in Eq. (2.12) will not result in visual discontinuities, only the discontinuities of the 

first two terms in Eq. (2.12) will be considered.  

The discontinuity of the first term represents step edge in an image; it is also referred to as a jump 

in some literatures. It is defined as: 

0

0

1

2

1 2

lim ( )

lim ( )

x x

x x

f x c

f x c

c c

+

!

"

"

=#
$$

=%
$
$ &'

  (2.13) 

where ci (i=1,2) are finite constants. The left-limit and right-limit of f(x) at x0 both exist, but are 

not equal, i.e. not continuous. The difference between c1 and c2, d = c2 – c1, is also known as the 

magnitude of the step edge.  

The discontinuity of the second term in Eq. (2.12) is called a roof edge, which means the first 

order derivative of f(x) is not continuous. Expressing it mathematically, 

0 0

0

0

0

1

2

1 2

lim ( ) lim ( )

lim '( )

lim '( )

x x x x

x x

x x

f x f x c

f x c

f x c

c c

+ !

+

!

" "

"

"

= =#
$
$ =$
%

=$
$
$ &'

  (2.14) 

where ci (i=0,1,2) are finite constants, 

� 

f ' (x)  is the first order derivative of the function f(x). Eq. 
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(2.14) indicates that the function f(x) is continuous at x0 but its first order derivative is not.  

Based on the above definitions, and to handle discontinuities which are important in dealing with 

edges, the function is assumed to be piecewise linear/constant. The discontinuous function f(x) 

can be written as: 

0 0

1

( ) ( ) ( )  
p

j j j

j

f x a b x a b x I x            x X
=

= + + + !"  (2.15) 

where aj and bj are the constant coefficients for the piecewise linear function. The definition of 

function I is given by: 

0
( )

1

j

j

j

        x x
I x          j=

        x x

!"#
= $

>#%
{1,2... }p and  x X!  (2.16) 

where p is the number of discontinuous points and {xj, j =1, 2, … p} are the discontinuous points 

in function f(x).  

According to Eq. (2.15), there are three possible types of discontinuities in the given function, as 

shown in Figure 2.3: 

1. Step edge: aj ≠ 0, but bj = 0 (1≤ j ≤ p); 

2. Roof edge: aj = 0, but bj  ≠ 0 (1≤ j ≤ p); 

3. Hybrid of Step and Roof: aj ≠ 0 and bj ≠ 0 (1≤ j ≤ p). 

The above discussions are valid in the continuous domain R . In image processing using 

computer, the image in question must be digitized. The process is known as sampling or 

digitization. The sampling system, is either a camera or a scanner, the image resolution is usually 

well defined to suit the task at hand. Sampling methods vary with applications. In some cases, 

data could be obtained at any given point and the sampling interval may not be uniformly 

distributed. In this work, images are captured by CCD camera with uniformly distributed 
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rectangular sensor array. The sampling interval is thus fixed and sampled points are uniformly 

distributed. Any points between the two sampled points is considered as “unobservable”.  

 
(a). Step Edge 

 
(b). Roof Edge 

 
(c). Hybrid of Step and Roof Edge 

Figure 2.3 Different Discontinuities in the 1-D Piecewise Linear Function 

The existence of discontinuities in the image function demands a high sampling frequency (as per 

Nyquist Sampling Theory). The sampling interval should be small enough to make these 

discontinuous points observable. After sampling, the function will be in discrete domain 

represented by Eq. (2.17): 

0 0

1

( ) ( ) ( )
p

j j j

j

f i a b i a b i I m
=

= + + +!  (2.17) 

where i={1,2,3…N} is the index of sampled points and j={1,2…p} is that of the discontinuous 

point. N is the total sampling points and p is the number of discontinuous point.  

The definition of function I is: 
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0
( ) { } and { }

1

j

j

j

        k m
I m     j= 1,2,..p   k= 1,2,..N

        k m

!"#
= $

>#%
 (2.18) 

where mj ∈{1,2,3⋯N} is the positions of discontinuous points in the signal. 

The signal given in Eq. (2.17) is actually a Markov Chain(MC). In Chapter 3, the details of how 

to generate such a signal will provided.  

2.4. Markov Random Field and Bayesian Inference 

Many computer vision problems can be posed as labeling problems, the solution of which is a set 

of labels assigned to image pixels. Image Processing is also a natural representation for the study 

of Markov Random Field (MRF) [32]. Generally, MC is for 1-D signal and MRF is for 2-D 

images. MC will be discussed and studied in details in Chapter 3 and Chapter 4.  

Labeling problem is specified in terms of a set of sites and a set of labels. Let S = {1,2,…NM} be 

the discrete set of N×M sites, which are actually points in the Euclidean space/Cartesian lattice, 

such as image pixels. Sites on a lattice in this dissertation are considered as spatially regular. A 

label is an event that may happen at a site. Let L be the set of labels. The label set may be 

categorized as continuous or discrete. In this dissertation, L is an interval of   

� 

R , say L =[Lmin, 

Lmax]!    

� 

R . For example, in image processing tasks, L is between [0,255], which is the commonly 

used 256 gray levels for a monochrome image. 

The labeling problem is to assign a label from the label set L to each of the sites in S. Edge 

detection in image processing, for example, is to assign a label from the set {edge, non-edge} to 

sites in S. The set f={f1=L1, f2=L2,…fNM=LNM} is called labels of sites in S in terms of the labels in 

L. When each site is assigned a unique label, f can be regarded as a function with domain S and 

image L. Because the support of the function is the whole domain S, it is a mapping from S to L, 
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which is  

:f !S L   (2.19) 

The definition of S is actually equivalent to ! for digital image, the support of the image. 

In the terminology of random fields, a labeling is called a configuration. A configuration can be 

corresponding to an image, an edge map, and so on. When all the sites have the same label set L, 

the set of all possible labelings, which is the configuration space  

� 

F , follows the Cartesian 

produce: 

    

� 

F = L ! L ! ...L = L
N !M

 (2.20) 

where N×M is the total number of the pixels in the image. In image restoration, for example, 

when the image size is 256×256 and the gray level is 256, then the total number of possible 

configuration in   

� 

F  is (256)256×256. Examination of all configurations is infeasible. In some 

literatures, this is called as the “curse of dimensionalities”. Some constraints need to be imposed. 

In fact, only few configurations in the configuration space are meaningful in most applications. 

The constraints are also called the à priori knowledge in Bayesian inference. 

The sites in S are related to one another via a neighborhood system N . A neighborhood system 

for S is defined as: 

{ | }i= ! "S
i

N N  (2.21) 

where N i is the set of sites neighboring i. The neighborhood relationship has the following 

properties: 

1. A given site is not neighboring to itself: i!
i

N ; 

2. Neighboring relationship is mutual: 'i i! " !
i' i

N N . 
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For a regular lattice, the neighborhood of i is defined as the set of sites within a radius of r from i: 

2 2{ ' | ( ') , ' }i i i r i i= ! " # $S
i

N  (2.22) 

The commonly used 4-neighbor and 8-neighbor system in image processing literature is defined 

by r = 1 and r = 2 , respectively. In the MRF, there is another concept called cliques, which is 

all the possible combination of the sites within the neighborhood.  

  

� 

F  is said to be a Markov Random Field on S with respect to a neighborhood system N  if and 

only if the following two conditions are satisfied: 

1.     

� 

P( f ) > 0   !f "F   (2.23) 

2. -{ }( | ) ( | )i i if f f f=
S

P P
i

N   (2.24) 

In this work, capital   

� 

P  stands for the probability and   

� 

p  means the probability density function. S 

– {i} is the set difference. The first condition is called Positivity and the second is the Markovity. 

The Positivity is assumed for technical reasons, since the probability of a configuration to occur 

must be equal or greater than zero. It is usually satisfied in practice. When the Positivity condition 

is satisfied, the joint probability ( )fP  of any random field is uniquely determined by its local 

condition probabilities [32]. In MRF, only neighboring labels have direct interaction with each 

other. If the largest neighborhood is selected, in which the neighbors of any sites include all other 

sites, then every random field is a MRF with respect to such a neighborhood system [98]. MRF 

has other properties, such as homogeneity and isotropy, while common images do not have these 

properties. 

There are two ways to specify an MRF, one of which is in terms of the conditional probabilities 

( | )if fP
i

N
 and the other one is the joint probability ( )fP . In [32], Besag preferred the joint 

probabilities in view of the disadvantages of the conditional probabilities approach. Firstly, no 
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obvious method is available for deducing the joint probability from the associated conditional 

probabilities. Secondly, the conditional probabilities themselves are subject to some non-obvious 

and highly restrictive consistency conditions. Thirdly, the natural specification of the equilibrium 

of statistical process is in terms of the joint probabilities instead of the conditional probabilities. 

Fortunately, a theoretical result on the equivalence between the MRF and the Gibbs distribution 

provides a mathematically tractable means of the joint probabilities of MRF, known as the 

Hammersley and Cllifford theorem[32][99].  

A set of random variables is said to be a Gibbs Random Field (GRF) on S with respect to N  if 

and only if its configurations obey a Gibbs distribution. A Gibbs distribution takes the following 

form: 

1
( )

1( )
U f
Tf Z e

!
!

= "P    (2.25) 

where 

  

� 

Z = e
!
1

T
U ( f )

f "F

#  (2.26) 

Z is a normalizing constant called the partition function. T is a constant called the Temperature 

factor. U(f) is the energy function, which is: 

( ) ( )c

c

U f V f
!

="
C

  (2.27) 

U(f) is a sum of clique potential Vc(f) over all possible cliques C. The value of Vc(f) depends on 

the local configuration. Note that Gaussian distribution is a special member of this Gibbs 

distribution family, which is generally called the Gaussian MRF. 

Bayes statistics is a theory of fundamental importance in estimation and decision making. 

According to this theory, when both the prior distribution and the likelihood function of a pattern 
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are known or assumed, the best estimation could be achieved by following the Bayes formulation 

based on the sources of the knowledge. The Maximum à posterior (MAP) is sought in many 

vision works since it was advocated by Geman and Geman[33] and many others. Although the 

MRF is a straightforward representation of the image both in theory and practice, it is not 

sufficient to handle the ill-conditioned problem of image restoration. Generally, the MRF 

cooperates with Bayesian theory to form so-called MRF-MAP estimation. 

In Bayesian estimation, a risk is minimized to obtain the optimal estimation. The Bayes risk of an 

estimate 

� 

ˆ f  based on f is defined as: 

    

� 

R( ˆ f ) = C( ˆ f , f ) p( f | g)df
f !F

"  (2.28) 

where ˆ( , )C f f  is a cost function and   

� 

p( f | g)  is the posterior distribution of estimated f given 

observed g. The posterior distribution can be calculated from à priori and the likelihood. 

Following the Bayes rule, the posterior probability can be computed by: 

  

� 

p( f | g) =
P(g | f )p( f )

P(g)  (2.29) 

where   

� 

p( f )  is the prior probability of f,   

� 

P(g | f )  is the conditional probability of the 

observations, also known as the likelihood function (LF) of f when g is given, and   

� 

P(g)  is the 

probability of g to occur, which is a normalization constant. 

The cost function ˆ( , )C f f  determines the cost of the estimate 

� 

ˆ f  when f is true. It could be 

defined according to different preferences and applications. Two popular choices are the 

quadratic cost function: 

2
ˆ ˆ( , )C f f f f= !    (2.30) 
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And the δ(0-1) cost function: 

0 ˆ( , )
1 

C f f
!

= "
#

     

ˆif 

otherwise

f f !" <

 (2.31) 

These two common used cost functions are shown in Figure 2.4. 

 
(a). Quadratic Cost Function                               (b). δ Cost Function 

Figure 2.4 Quadratic Cost Function and δ Cost Function 

Different cost functions will yield different estimates of f, for example using quadratic cost 

function, the minimal variance estimation can be obtained: 

    

� 

ˆ f = fp( f | g)df
f !F

"  (2.32) 

which is actually the mean of the posterior distribution. With the δ(0-1) cost function, the 

minimum risk estimate is: 

    

� 

ˆ f = arg  max(p( f | g))
f !F

= arg  max(P(g | f )p( f ))
f !F

 (2.33) 

It is known as the MAP estimation. Obviously, when the prior distribution   

� 

p( f )  is flat, the MAP 

will be equivalent to the ML estimation. 
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2.5. Fidelity Criteria of  Image Quality 

Removal of the noise generally causes a loss of real or quantitative visual information. Because 

information of interest may be lost during the improvement of image quality, repeatable or 

reproducible measurement of quantifying the nature and the extent of image loss is highly 

desirable. Two general classes of criteria are used as the basis for such assessment: objective 

criteria and subjective criteria. When the observed image g is degraded by noise: 

( , ) ( , ) ( , )    {1 ,1 }ng i j f i j e i j i N j M= + ! ! ! !  (2.34) 

If the information loss can be expressed as a function of the original image f and the estimated 

image 

� 

ˆ f , it is said to be based on an objective criterion. Because of the redundant of image, the 

definitions of such criteria are somewhat difficult and diverse. The image quality itself usually 

means the visual effects of the image, e.g. which image is better and clearer by examination using 

our naked eyes, which is highly subjective. A single mathematically defined objective criterion 

often is not sufficient to describe the image quality. Some criteria have been proposed and have 

satisfied two basic imperatives for image quality criterion. If a criterion for the image quality is l , 

then the imperatives can be stated as: 

1. When 

� 

ˆ f = f , then l  = 0; 

2. If l  1< l  2, then 

� 

ˆ f 
1
 should have better visual observation than 

� 

ˆ f 
2
. 

Such criteria commonly used to evaluate the quality of the image in image processing and 

computer vision community, include the Root Mean Square Error (RMS), Mean Square Error 

(MSE), Mean Absolute Error (MAE), and Maximum Absolute Difference (MAD). The 

definitions of the above criteria are shown in Eq. (2.35) ~ (2.38). 

2

1 1

1 ˆ[ ( , ) ( , )]
N M

i j

RMS f i j f i j
NM = =

= !""  (2.35) 
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2

1 1

1 ˆ[ ( , ) ( , )]
N M

i j

MSE f i j f i j
NM = =

= !""  (2.36) 

1 1

1 ˆ[| ( , ) ( , ) |]
N M

i j

MAE f i j f i j
NM = =

= !""  (2.37) 

,

ˆmax[| ( , ) ( , ) |]
i j

MAD f i j f i j= !  (2.38) 

These criteria are actually measurements of the difference of the original image and the estimated 

image. It is clear that these four criteria satisfy the first imperative as stated above. However, 

eliminating the error/noise completely is impossible and difficult in most of the applications. 

Generally the second imperative is more important in the evaluations of the image quality. 

Fortunately, it is proven that these criteria also generally satisfy the second imperative. These four 

criteria are based on different norm function, say, RMS is root of 2-norm, MSE is 2-norm squared, 

MAE is 1-norm and MAD is infinite-norm.  

Besides the criteria of the image quality, some descriptions of the noise are also needed, more 

accurately, a mathematical description of the relationship between the noise, the original image 

and the estimated image. The commonly used quantitative measurements of the noise are the 

Signal-Noise Ratio (SNR), Improved Signal-Noise Ratio (ISNR) and the Peak Signal-Noise Ratio 

(PSNR). The formulations of the three measurements are: 

2

1 1

10
2

1 1

( , )

10 ( )

( ( , ))

N M

i j

N M

n

i j

f i j

SNR log

e i j

= =

= =

=

!!

!!
 (2.39) 

2

1 1

10
2

1 1

( ( , ) ( , ))

10 ( )
ˆ( ( , ) ( , ))

N M

i j

N M

i j

f i j g i j

ISNR log

f i j f i j

= =

= =

!

=

!

""

""
 (2.40) 
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,

10

max( ( , ))
20 ( )

i j
f i j

PSNR log
RMS

=  (2.41) 

All these criteria and quantitative measurements are called the objective fidelities of the image 

quality. Note that these measurements of the noise and the errors are all related. It is actually very 

hard to judge whether an image is better than another one based only on one or two such criteria. 

Obviously, it is difficult to evaluate the image quality, since it is common that one image might 

have a low noise measurement and smaller error, and yet is worse in visual observation than 

another image which has higher noise measurement and bigger error. In this case, all the criteria 

from Eq. (2.35) to (2.41) will be used as the measurements of the image quality in the following 

Chapters and use them to present an objective comparison of the experimental results. 
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3 .  C h a p t e r  3  
 
B a y e s i a n  I n f e r e n c e  o f  E d g e  I d e n t i f i c a t i o n  
i n  1 - D  P i e c e w i s e  C o n s t a n t  S i g n a l  

Edge identification and detection are important processes in image processing works. Edges are 

the discontinuities in an image as they help in demarcating regions of interests and of different 

properties. In this chapter, Bayesian Inference approach will be developed for edge identification 

in 1-D piecewise constant signal with Markovity. In Chapter 4, Bayesian kernel method for edge 

detection and the reconstruction of the 1-D piecewise linear signal will be proposed. 

3.1. Markov 1-D Piecewise Signal with Step Edge  

In this Chapter, the signal is 1-D piecewise constant, which is commonly encountered in image 

processing applications. Different terminologies are used to represent image/signal. In statistical 

analysis, the term “function” is often used; whilst in image and signal processing, “image/signal’ 

is used. In this dissertation, “function” is used to denote image/signal in continuous domain, i.e. 

before sampling; and “image/signal” represents its discrete version. 

As mentioned several times above, discontinuities, such as the outline of the objects, provide key 

information to help in various image processing procedures; in this work, image restoration. 

Discontinuities useful to observation are the line discontinuities, or commonly known as edges. 

The mathematical representation of edges has been presented in details in Section 2.3, based on 

which the ensuing discussion would follow. 

Because the step edge is more common in images and its location is very important in some 

processing, such as the edge detection, the identification of the step edge will be studied in this 

Chapter, e.g. 0jb =  in Eq. (2.17) in the last chapter. In this regard, the function could be written 
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as: 

0

1

( ) ( )
p

j j

j

f i d I mµ
=

= +!   (3.1) 

where µ0 is the initial value of the function and dj is the magnitude of the edge. The function I is 

defined in Eq. (2.18).  

Supposing that for a given sampled point, the probability of the point to be a step edge point is: 

( ( ) 1)bd i != =P  (3.2) 

where ρ is a constant between (0, 1). bd is a logical variable to determine whether the given 

points is a edge point (bd(i) = 1 for edge point and bd(i) = 0 for non-edge point). Then the 

probability of the point is not an edge is   

� 

P(bd(i) = 0) =1! " . Note that ρ is also called the 

transition kernel in some literatures on Monte Carlo simulation. It indicates how likely it will 

change the status (edge/non-edge) in the next step. For a given point f(i-1), the next state will be 

determined by: 

( 1)       if ( )=0
( )

                if ( )=1

f i bd i
f i

h bd i

!"
= #
$

 (3.3) 

where h is another label sampled from L which is not equal to f(i-1). The following procedure is 

applied to generate the piecewise constant signal which has the characteristics of Markovity: 

1. Initialize the parameter 0 < ρ < 1; 

2. Generate a random label from U(0,255), then give this value to f(1); 

3. Generate a random value a from U(0,1), then compare it with ρ; 

a). If  a >ρ, bd(i)=0 and f(i)=f(i-1) 

b). If  a <ρ, bd(i)=1, generate another random label from U(0,255) and give it to f(i). 

4. Increase i, if i ≤ N, go back to 3, otherwise, terminate. 



Weimiao YU Bayesian Approaches for Image Restoration 

ME Department of National University of Singapore 
41 

where U(0,255) is a uniform distribution between 0 and 255. It is assumed that the label only can 

take integer value, as the common gray level values. 

Markov chain is time/spatially invariant in this work, i.e., the value of ρ should be a constant or 

could be approximately treated as a constant with respect to time/space. With the increase in ρ, 

there will be more edge points within a given length of signal, and vice versa. The number of the 

edge points p is called the model order in this work. It will be determined by the summation of 

the variable bd, which is: 

1

( )
N

i

p bd i
=

=!  (3.4) 

Note that the number of edges p is also a random variable, which has a Binomial distribution 

according to a given probability ρ. As noise is inevitable in the observed data or sampled image, 

instead of dealing with the original clean signal represented by Eq. (3.1), only its degraded 

version is observable, which is represented by Eq. (3.5).: 

� 

g(i) = f (i) + e(i)   (3.5) 

where e is the noise term, which is assumed to be an i.i.d Gaussian noise with zero mean and 

unknown variance σ2,say, e ~ N(0, σ2). 

Bayesian theory is to use à priori knowledge, learnt from the given signal and then use it to 

update the posterior distribution. Note that unsuitable à priori knowledge will yield wrong 

solutions or limit the applicability of the model. In this case, the reasonable à priori knowledge 

includes: 

1. f is piecewise constant. There are only countable discontinuous points in the given 

signal.  

2. The number of edge points is finite, but how many edges are in the signal and where 

they are unknown.  
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3. e is an i.i.d Gaussian noise with zero mean and unknown variance σ2. 

4. The magnitude between any two consecutive pieces should not be known. 

3.2. Step Edge Detection Based on Posterior Evidence in 1-D 

3.2.1. Estimation of  the Edge Points with Known Edge Number 

If the number of the edge points p is known in the case of multi-edge points, the estimate of the 

edge can be done with either ML or MAP method. The analytical solutions will be identical. The 

parameters needed to estimate are given in Eq. (3.6) and (3.7): 

},...,{ 10 pµµµµ =
v

 (3.6) 

}...,{ 21 pmmmm =
v

 (3.7) 

where 

� 

µi = µ
0

+ d j

j=1

i

! , im j !  for i={1,2,…N} and j={1,2,…p}. If the noise variance is included 

into the model, the parameter vector is 0 1{ ( , ... ),
p

! µ µ µ µ= =
v v  2

1 2( , ... ), }
p

m m m m !=
v , which give a 

total of 2(p+1) elements. Two special edge points are defined, which are m0 =1 and mp+1=N, for 

the convenience of inference. In fact, they can be considered as edge points with known positions. 

For the problem of identifying edge points given by Eq. (3.1), (3.6) and (3.7), the likelihood 

function is given by the joint probability of the noise samples: 

!
=

=

N

i

iepg
1

))((),|( PP "
vv

 (3.8) 

Since: 

  

� 

P(e(i)) =
1

! 2"
exp(#

(e(i))
2

2!
2
)  (3.9) 

Substitute Eq. (3.8) into Eq. (3.9): 
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� 

P(g |!, p) = (2"# 2)
$N

2 exp($
1

2# 2
( e(i)2

i=1

N

% )) (3.10) 

The summation in Eq. (3.10) could be decomposed into: 

1 2

1

2 2 2 2

0 1

1 1 1 1

( ( )) ( ( ) ) ( ( ) ) ... ( ( ) )
p

m mN N

p

i i i m i m

e i g i g i g iµ µ µ
= = = + = +

= ! + ! !" " " "  (3.11) 

where p is the number of the edge points, is also called as the model order. According to Bayesian 

rule, the posterior distribution of the parameters will be: 

)|(

)|},,({)},,,{|(
),|},,({

pg

pmpmg
pgm v

vvvv
vvv

P

pP
p

!µ!µ
!µ =  (3.12) 

In order to deduce the posterior distribution, the prior distribution of the parameter vector needs 

to be defined. The parameters, µv , mv , and σ, are assumed to be independent of each other. Then 

the prior distribution follows: 

    

� 

p({
v 

µ ,
v 
m ,!} | p) = p(

v 
µ | p)p(

v 
m | p)p(! | p)  (3.13) 

The first term in Eq. (3.13) is the prior distribution function of the gray levels for the given signal 

(digitized image). Two conjoint pieces must have different gray levels, however, if they are not 

conjoint, they are allowed to have the same gray level. All the elements in µv  are assumed to be 

independent and identically and uniformly distributed [100][101]: 

  

� 

p(µi | p) = U(0,255)      ( i = 0,1,2,...p)  (3.14) 

Another argument then arises on the validation of this assumption of independence. If the 

property of i.i.d represented by Eq. (3.14) holds, it cannot guarantee that any two given conjoint 

pieces would have “obvious” different values. For example, the probability of µi=100 is 1/256. 

µi+1 will also be sampled according to Eq. (3.14) if it is a step edge. Then the probability that 

µi+1=100 is 1/65536. Although the value of the probability is small, it is still not equal to zero. So 
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if all the conjoint pieces have “enough” distinct value, then all µi’s are not absolutely 

independent. Fortunately, the dependence between two conjoint pieces can usually be ignored. In 

practice, when the signal is generated, the edge magnitude is not regulated. Contrarily, if µi and 

µi+1 have the same value, then the model p-1 is true, instead of there are p edge points. 

Furthermore, here it should be highlighted that the gray level difference between any two 

consecutive pieces should be notably higher than the noise level. For example, when the noise 

level is σ=10, but the difference between two consecutive pieces are 10-2, i.e. |µi -µi-1 |<10-2, then 

we should not expect the algorithm could identify such a tiny edge point. 

The second term is the prior distribution of the edges location. Since no information is available  

initially, it is natural to use some non-informative prior distribution, which is [100][101]: 

  

� 

p(m j | p) =
p

N
    ( j = 1,2,...p)  (3.15) 

where N is the length of the signal. This indicates that the prior probability of every point in the 

signal to be qualified as an edge point is equal to p/N. Similarly, no element in mv  should be 

equal to each other. For example, if there are two elements in mv  that are equal, the p-1 is true, 

instead of there are p edge points. 

The last term on the right hand-side of Eq. (3.13) is the prior distribution of the noise. Here the 

non-informative Jeffrey à priori form is used, which is [100] ~ [101]: 

  

� 

p(log! | p) = c   (3.16) 

where c is a constant. Therefore, the following is obtained [100] ~ [101]: 

  

� 

p(! | p) =
c

!
 (3.17) 

Note that the uniform distribution in Eq. (3.14), Eq. (3.15) and Eq. (3.17) are not proper. The 

denominator in Eq. (3.12) is only a constant. Based on the assumption that the model p is true 
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(there are p edge points within the given signal) and the determined prior distribution, then we 

obtain: 

    

� 

p({
v 

µ ,
v 
m ,!} |

v 
g , p)"

1

!
P(

v 
g |{

v 
µ ,

v 
m ,!}, p)  (3.18) 

In order to deduce the location of the edge, the marginal distribution 
    

� 

p(
v 
m |

v 
g , p)  is desired. 

Integrate it with respect to µv  and σ, giving us: 

    

� 

p(
v 
m |

v 
g , p) =

1

!
P(

v 
g |{

v 
µ ,

v 
m ,!}, p)d

v 
µ d!""  

2

2 2 2

1 1 11 0 2 1 1

1 1
exp[ ( ( )) ]

( ) ( )...( )

NpN

j

i j j jp p

g i S
m mm m m m m m

!
!

= = !+

" !
!! # ! !

$ $
(3.19) 

where: 

1 1

( )
j

j

m

j

i m

S g i
!= +

= "     (j=1,2,…p+1) (3.20) 

Note that m0 =1 and mp+1=N are defined at the beginning of this section.  

In addition to the location of the edge points, the magnitude of the edge could be deduced, which 

could be determined by: 

1 1ln ( , , , , | )j j j jd m m m g!
" +

#
v

P  

� 

lnC1 + C2[
(m j+1 !m j!1 !1)(m j !m j!1) ! (m j !m j!1)

2

(m j+1 !m j!1 !1)
d j
2

+  

� 

2(
(m j+1 !m j!1 !1) ! (m j !m j!1)

(m j !m j!1)
S j
T
! S j!1

T
)d j + S j

T
2

!
1

(m j+1 !m j!1 !1)
(S j

T
)
2
] (3.21) 

where C1 and C2 are unrelated constants, and: 
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= "   (3.22) 
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+

!
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=

= "   (3.23) 

Then based on Eq. (3.21), the inference gives us the estimation of the magnitude of the edges dj: 

1 1 1

1 1

( ) ( 1)
ˆ

( 1)( )

T

j j j j j j

j

j j j j

m m S m m S
d

m m m m

! + !

+ !

! ! ! !
=

! ! !
 (3.24) 

Noise is also an important concern. Estimate of the unknown variance of the Gaussian noise is 

given by: 

� 

1

N
[ (g(i))

2
!

1

m j ! m j!1

S j

2

j=1

p

"
i=1

N

" ] ~ N(#
2
,
#
2

N
+

2µ j#
2

Nj=1

p

" )  (3.25) 

According to the central limit theorem, the above term will converge to the real value of the 

variance when N is a large number. The error of the estimation of the noise variance is proven to 

be bounded. 

Evaluation of the marginal distribution in Eq. (3.19) of low dimensions is feasible, while with the 

increase of the dimensionalities, it will fall into the “curse of dimensionalities”. For example, if 

p=1, the marginal distribution can be evaluated for N points, while if p =K, then Eq. (3.19) needs 

to be evaluated for (N)K points. Even for small values of N and K, say N=256, K=5, calculation of 

Eq. (3.19) is (256)5=1.1000×1012 points, which is very computational intensive to implement in 

practical. 

3.2.2. Posterior Evidence Based on Sequent Model Select 

The inference of the above section is for the multi edge points in a given signal when the number 

of the edge points is already known. Even though analytical solution can be deduced, it is difficult 

to evaluate the posterior distribution when the model order is high. Since the uniform distribution 
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is used as the prior and the normalization constant is ignored, the solutions in Eq. (3.19) and (3.24) 

are the same with the ML solution. Using the ML method to infer the value of the parameters 

would have serious limitation when the model order is unknown. Firstly, the likelihood does not 

use information other than the data itself to infer the value of the parameters before the data is 

obtained. In some cases, a physical understanding will suggest that some values of the parameters 

are not possible. There are many cases that ML can return parameter estimations outside the 

sensible range of the parameter in question. Secondly, the likelihood on its own does not limit the 

number of parameters in a model used to fit the data. In general, the more complex the model, the 

better fit would be to the data.  

ML method will easily over-parameterize the model. The major difference of the ML and the 

MAP is that the latter (Bayesian) uses à priori knowledge to learn from the obtained data. 

Generally, in practice, the number of edges is not known in the given signal à priori. Thus, this 

given problem has two levels of inference: 

1. Assume that there is a number of edges in the signal, say p, is true; find the parameters 

from the given data based on à priori knowledge. This is the first level of the problem, 

called model fitting. 

2. For the given set of assumed model (p=1,2…Q), find the best model p for the given 

data, also called model selection. 

The last Section 3.2.1, only provides the solution for the first level of the inference when p is 

known. Furthermore, as shown in the same section, it is basically impossible to calculate the 

marginal posterior distribution in Eq. (3.19) in a high dimensional space when p is large. Since no  

information is readily available about where the edges are located at the beginning, all the points 

in the signal could be the candidates of the edges. The number of distinct possibilities for the 

position of the edge points is N!/[(N-k)!k!]. It is not feasible to examine all the possible edge 

points over the high dimensional space of (N)k. Special treatment is needed in practical  
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computation.  

The Markov Chain Monte Carlo (MCMC) introduced in Chapter 1 is popular in the past years. It 

is well known to be insensitive to the dimensionality. This makes it a powerful tool in Bayesian 

framework. For the given problem in Eq. (3.19), the maximum in 
    

� 

p(
v 
m |

v 
g , p)  needs to be 

evaluated, but cannot do so analytically. If samples { , 1,2,.....}
t
m t =
v  are drawn from the posterior 

distribution, then the expected/approximated posterior distribution will be: 
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1
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E p m g m
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! "
=

# $
vv v v

 (3.26) 

Here a Bayesian approach of the multi-edge model selection is presented. The choice is made due 

to the advantage offered by the Bayesian formulation. It can solve the two levels of inference 

mentioned above, i.e., the model fitting and the model selection.  According to Bayesian rule, the 

model fitting is given by: 

    

� 

p(
v 
! |

v 
g , p) =

P(
v 
g |

v 
! , p) p(

v 
! | p)

P(
v 
g | p)  (3.27) 

The model selection is described by: 

    

� 

p(p |
v 
g ) =

P(
v 
g | p)p(p)

P(
v 
g )  (3.28) 

In [102], it is suggested that the evidence 
    

� 

P(
v 
g | p)  is sufficient for model select task when the 

prior of the model   

� 

p( p)  is uniformly distributed and a prior distributions for all the parameters 

in Eq. (3.27) are proper. Unfortunately, some of the prior distributions in Section 3.2.1 are not 

proper, therefore, 
    

� 

P(
v 
g | p)  cannot be used to estimate the model order in the inference. In order to 

alleviate this problem, it is assumed that   

� 

p( p)  is not a uniform distribution in this work. 

Fortunately, the sampling systems are normally designed with pre-determined resolution; the 

captured signal can usually provide us with enough information for the high level processing 
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tasks.  

Prior distribution for the model in Eq. (3.28) should not be uniformly distributed. The model prior 

distribution will be determined by the hyper-parameter ρ defined in Eq. (3.2). It describes the 

complexity of the model. In fact, the prior distribution of the model is a Binomial distributed in 

discrete form. Gamma distribution can be used to approximate it in the continuous domain. To 

determined the model order, the “posterior evidence” 
    

� 

p( p |
v 
g )  which is in Eq. (3.28) is evaluated, 

instead of the evidence 
    

� 

P(
v 
g | p) . Note that ρ is also a variable which is not known à priori. How 

to estimate its value will be discussed later. 

As stated above, the likelihood function can always be increased by increasing the model order. 

Of course, adding an edge point in the given signal can increase the likelihood when the 

confidence is low, while “posterior evidence” will be penalized by  

� 

p( p) . This phenomenon is 

known as the Occam’s razor [103] ~ [104]. It states that if several models are compatible with a 

set of observations/data, the least complex model is preferred. This can be simply explained by 

the fact that a model with fewer parameters would usually be less complex and more likely to 

occur.  

In order to calculate 
    

� 

p( p |
v 
g ) , the evidence 

    

� 

P(
v 
g | p)  should be calculated first, which is the 

normalization constant in Eq. (3.27):  

    

� 

P(
v 
g | p) = P(

v 
g |

v 
! , p) p(

v 
! | p)d

v 
! v 

! 
"  (3.29) 

Calculating the normalization constant in Eq. (3.29) is computational intensive, as the state space 

for the integration is in the order of (N)k, where N is the length of the signal and k is the 

dimension of the parameter !
v

. Mackay [102] suggested to use the peak value of 
    

� 

p(
v 
! |

v 
g , p)  

multiplied by its width, or say variance, to approximate 
    

� 

P(
v 
g | p) . Similar idea is used here. Since 

if there is an edge point in the given model, the probability of the edge point in its right location 
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will dominant the range of defined space. Based on this idea, Eq. (3.29) can be calculated by: 

    

� 

P(
v 
g | p) ! P(

v 
g |

v 
" ML , p) p(

v 
" ML | p)# d

v 
g  (3.30) 

In the above equation, only the probability of locating the most likely edge points are integrated 

to estimate the evidence. By doing so, the evidence is evaluated in the state space of 1×N. Some 

error could, however appear in this calculation. The normalizing constant could be different for 

different models due to the nature of the non-proper prior distributions. 

Here, the location of the edges can be determined step by step. First assume that there is no edge 

point in the given signal. By evaluating Eq. (3.27) (which is actually Eq. (3.19)), decide whether 

the assumption is right. The confidence level of adding a new edge point is 75%. If it is lower 

than the given confidence level, calculation can be terminated. If a higher confidence is obtained 

that an edge point exists in the given signal, an edge point is added into a list and find the best 

value of the edge location based on Eq. (3.19). At the same time, the estimation of 
    

� 

P(
v 
g | p)  is 

updated. Since all the edge points are assumed to be independent of each other, we can now 

continue to search for another edge point. Note that the calculation of evidence 
    

� 

P(
v 
g | p)  is 

according to Eq. (3.30). Step by step increasing the model order (the number of edge points 

determined thus far) one by one and then we determine the properties of edge points (location and 

magnitude) in sequence. The procedure is summarized as follows: 

 1.  Assume p=0; 

 2.  Calculate the posterior distribution according to Eq. (3.19); 

 3.  Determine whether update the estimated hyper 

� 

ˆ !  based on a given confidence level,  

(a). If have higher confidence(>75%), insert an edge point and update 

� 

ˆ ! , 

determined it position according to the Maximum, update the value of evidence 

    

� 

P(
v 
g | p)  according to Eq. (3.30). 
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(b). If have higher confidence(>75%), insert an edge point without update 

� 

ˆ ! , update 

evidence 
    

� 

P(
v 
g | p) . 

 4.  Increase p go back to Step 2, until all model orders p={1, 2, …K} are examined. 

5.  Get the a prior of   

� 

p( p)  according to the estimated 

� 

ˆ ! , then determine the model order  

according to 
    

� 

p( p |
v 
g )   

At the end of the above procedures, the most proper model is selected according to the “posterior 

evidence”.   

� 

p( p)  is actually controlled by the hyper-parameters ρ. The confidence level of adding 

an edge point in the model is 
add
T . In the experiments, 

add
T  is 75% to demonstrate a high level of 

confidence that there is one more unidentified edge point in the given signal. If there is a peak in 

Eq. (3.19) which is higher than 
add
T , an edge points is added into the model and its location is 

thus determined. The estimation of the hyper-parameter ρ is given by: 

ˆ
add
T
k

N
! =    (3.31) 

where 
add
T
k  is the number of the identified edge points based on the confidence threshold 

add
T . At 

last, Eq. (3.28) is evaluated to select the most possible model and simultaneously the estimation 

of parameter vector !
v

 could be made. 

3.3. Experimental Results  

3.3.1 Signal Generation and prior Distribution of  the Models Orders 

The piecewise constant signals for the simulation are generated according to the procedure in 

section 3.1. Piecewise signals with different value of ρ are shown in Figure3.1. With the increase 

of ρ, the signal will have more edge points for a given length of signal. Figure3.2 shows an 

example of piecewise constant signal (ρ=0.01) with different noise level. With the increase of the 

noise level, it is more difficult to identify the small step edges, as indicated by the circle in 
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Figure3.2.  

 

Figure 3.1 Piecewise Constant Signal with Different Values of ρ (No noise) 

 
Figure 3.2 Piecewise Constant Signal with Different Noise Variance(σ =0,10,30) 

Here the model order is actually the number of edge points of the signal and a pre-determined 

model set contains all possible numbers of edge points. Traditionally, it is assumed that all the 

models in a given model set are equally likely to happen. As stated in the last section, the prior 

distribution of the different models are not the same. The priori distribution of the edge point 

number obeys the Binomial distribution in the discrete space. It could be fitted by Gamma 

distribution in continuous domain. In order to know the prior distribution of the edge point 
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numbers, the simulation is carried on under an estimated !̂  based on predetermined confidence 

threshold according to Eq. (3.31). 

10,000 artificial signals with N=256 are generated and the numbers of the edges in the signal is 

determined according to the procedure in Section 3.1. Then Gamma distribution is used to fit the 

obtained data. Two explanations about why the Gamma distribution is preferred as the à priori of 

the edge numbers: 

1. The support of the gamma distribution is from zero to positive infinity. The probabilities of 

too low value and too high value are both low. In addition, some moderate value of 

probabilities will have maximum value, as shown in Figure 3.3 and 3.4. It fits the purpose 

and assumptions.  

2. The gamma distribution is compatible to the Gaussian distribution. Both of them are in 

exponential form. They are more flexible and smoother. This property also facilitates 

calculation. 

 

Figure 3.3 Prior Distribution of the Model Order Given ρ = 0.02 

One of the simulation results is shown in Figure 3.3 with ρ=0.02. Gamma parameter estimations 
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are estimated by the ML method. The simulation results of ρ=0.1 is shown in Figure 3.4. The data 

of simulations fit the assumption well too. Based on the simulation, the parameter estimations of 

the Gamma prior distribution is given in Table 3.1. From this table, the estimate of ρ, which is !̂  

in the table 3.1, is accurate. 

 

Figure 3.4 Prior Distribution of the Model Order for Given ρ = 0.1 

TABLE 3-1 PARAMETER ESTIMATION OF MODEL ORDER PRIOR DISTRIBUTION FOR 
DIFFERENT ρ 

� 

!  a b 

� 

ˆ µ  

� 

ˆ !  

� 

ˆ !  |

� 

! " ˆ ! | 

0.01 2.40 1.03 2.56 1.60 0.01 2.34E-06 
0.02 5.24 0.98 5.08 2.24 0.02 1.42E-04 
0.04 10.33 0.99 10.15 3.09 0.04 3.59E-04 
0.08 22.77 0.90 20.40 4.33 0.08 3.02E-04 
0.1 25.37 1.01 25.56 4.81 0.01 1.49E-04 
0.2 63.25 0.81 51.04 6.40 0.20 6.26E-04 
0.5 235.00 0.54 127.63 8.15 0.50 1.43E-03 

 

3.3.2 Experiments for the Single Edge Point Model 

In this experiment, the length of the signal is 256 sampling points. One of the signals and its 

confident limit are shown in Figure 3.5. In this figure, it is easy to identify the location of the 

edge and the confident limit of the edge location is near 100%. This is because the edge 
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magnitude is more than 200 and the noise variance is relatively small.  

 

Figure 3.5 Signal with Single Edge Point and the Confidence of Edge Location (Edge=102 and σ=20) 

The traditional SNR uses a single global value to describe the signal and noise, while in this 

work, SNR is not sufficient to describe the local details. Here the Local Signal-Noise Ratio 

(LSNR) is introduced. The definition of the LSNR for an edge is: 

2

10 2

( )
10 log [ ]     {1,2,... }

jd
LSNR j = k

!
= "  (3.32) 

where dj is the magnitude of the edge and σ2 is the noise variance. According to Eq. (3.32), each 

edge will have a different LSNR at the same noise level according to its magnitude. This will give 

us more details about the signal and noise. 

Do note that even the marginal likelihood in Eq. (3.19) is not related to the noise variance, while 

obviously, with the increase in the noise level, it will be more difficult to make a right decision on 

where the edge is, which is shown in Figure 3.6. The edge magnitude and the noise level will 

both affect the decision, in this connection, to recognize an edge, and its magnitude should be 

obviously distinctive amongst the noise level. 
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Figure 3.6 Confidence of Edge Location at Different Noise Level (Edge=130) 

This leads us to another important issue; how large should the edge magnitude be such that the 

method can successfully identify the edge and its location? Or, when would the proposed 

approach fail to identify the edge with the increase in the noise level? 

 

Figure 3.7 Accuracy and the Magnitude of the Edges under Difference Noise Levels  
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The LSNR will provide an indication on whether the proposed method is sensitive to noise. 

Figure 3.7 shows the results of the simulation under 5 different noise levels. This experiment is 

carried out in the following procedure: 

1. Select a noise level; 

2. Generate 10000 different signals with single edge point and record the edge magnitudes; 

3. Based on the single edge point inference, find the location of the edge; 

4. Record how many times a right decision are made on the edge location at different 

edge magnitude; 

5. Go back to 1, select another noise level. 

6. The procedure goes on until all the intended noise levels have been exhausted. 

From Figure 3.7, at a given noise level, the accuracy of identification will increase with the 

increase in the edge magnitudes. It is also obvious that when the edge magnitude is near zero, the 

accuracy is also zero. This is the reason for which the edge should have a relatively “obvious” 

magnitude compared with the noise level so that an accurate decision can be made. Two 

questions could be answered by looking at Figure 3.7. 

 

Figure 3.8 Minimum Magnitude of the Edges for Identification under Difference Noise Levels 
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Firstly, when will the Bayesian method start to be effective? As we know, to reach a decision on 

the correct identification of an edge, the edge magnitudes should not be too small. But, how 

“small” should this magnitude be? The points indicated by black triangle dots shown in Figure 

3.7 is selected, which means when the proposed approach starts to be effective to the given signal. 

They are shown in Figure 3.8, from which the relationship between the minimum edge magnitude 

and the noise level is shown to be approximately linear. The slope in Figure 3.8 is a good 

indication of the obvious edge at different noise levels. According to the simulation, the edge 

magnitude in gray level must be larger than: 

0.77 0.79efd !> +  (3.33) 

Eq. (3.33) gives the value of the edge magnitude, at a given noise level, beyond which the 

proposed formulation can correctly detect an edge point. If LSNR is used, then: 

10 2

1
10 log ( ) 2.2

0.77
efLSNR db= ! "  (3.34) 

Eq. (3.34) indicates that if the LSNR is smaller than 2.2 decibels (db), the proposed approach 

cannot detect the edge point. 

 

Figure 3.9 Magnitude of the Edges Identification with 100% Confidence at Difference Noise Levels 
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Secondly, when will the Bayesian method perfectly (at a confident level of 100%) identify the 

edge locations? Or, how large should the edge magnitude be such that the proposed method could 

recognize an edge point with high confidence? The first points with 100% confidence in Figure 

3.7 at different noise levels are selected, which are indicated by black round dot. The results are 

shown in Figure 3.9, in which they are plotted by the edge magnitude vs. the noise level 

represented by σ. The relationship between identified edge with 100% confidence and the noise 

variance is also about linear. The slope in Figure 3.9 is a good estimation of “clear” edge at 

different noise levels. According to the simulation, the edge magnitude must be larger than: 

100%
3.16 11.4d !> +    (3.35) 

The results can be explained as the LSNR limitation of the proposed method. According to Eq. 

(3.35), the smallest LSNR at which the proposed method could identify the single edge point with 

about 100% confidence in the given single edge model (used in Figure 3.7) is: 

2

100% 10

3.16
10 log ( ) 10

1
LSNR db> ! "  (3.36) 

Hence, based on the results of simulation on signal with a single edge point, LSNR must be at 

least 10db, or the edge magnitude must be at least 3.16 times larger than the noise variance σ, 

such that the single edge location can be identified with 100% confidence. On the other hand, if 

the edge magnitude is smaller than 0.77 times of the noise variance σ, identification of the edge 

points would be impossible. 

3.3.3. Experiments for the Multi Edge Point Model 

As stated in the previous sections, the evaluation of the posterior marginal likelihood of the 

Bayesian inference is computational intensive for cases with high dimensionality. Hence, direct 

calculation is generally not infeasible. For the example shown in Figure 3.10, p=5 and the length 

of the signal is 512 sampling points. There are five step edge points in the given signal with a 

noise variance σ = 30.  
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Figure 3.10 Piecewise Constant signal and the Edge Points at (71,199,243,420,469) 

 
Figure 3.11 Likelihood Function of the Signal Given Difference Model Order 

 

Figure 3.12 Confidence of Increasing Model Order and the Threshold of 75% 
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Figure 3.13 Posterior Evidence of the Given Signal with Corresponding Identified Edges at 
(71,199,243,420,469) 

The likelihood function given model orders is shown in Figure 3.11. Figure 3.12 gives the 

confidence of increasing the model order at different model order p. The threshold confidence of 

adding an edge into the model is 75%, which is indicated by a horizontal dash line in Figure 3.12. 

The Likelihood with different model orders in Figure 3.11 will increase with the model order as 

analyzed previously. If the Likelihood function is used as the cost function, it will easily cause the 

over-fitting.  

The round point in Figure 3.13 indicates the most likely model order and the numbers at the 

bottom, (71,199,243,420,469), show the corresponding estimated locations of edge points. As 

mentioned above, the total likelihood in Eq. (3.28), which is the first term in the numerator, will 

continuously increase with the increase in the model order, while this increase will be penalized 

by prior distribution of the model according to the estimated model prior based on the confidence 

threshold, which is the second term in Eq. (3.28). 

In order to know the accuracy of the proposed method for the multi-edge model, a benchmark is 

provided according to the simulation results. Two definitions are required to evaluate the results: 

 Missing Edge: there is an edge point in the signal, while the proposed approach fails to 

identify it. 
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 Wrong Edge: there is no such edge point in the signal, while the proposed approach wrongly 

identifies it as an edge point. 

A simulation is carried on for 5000 generated signals of 512 points, at six different noise levels. 

Table 3-2 shows the results of the simulation. 

According to Table 3-2, the proposed method is robust and not-sensitive to noise. One of the 

reasons for the missing edge points is that the magnitude of edge is not regulated. It is possible 

that some conjoint pieces have very similar gray level, or the edge magnitude is not obvious, e.g. 

d < 0.77σ. According to the experimental result on the LSNR, if the magnitude of the edge is too 

small, it is possible that the proposed method might not identify some of those small edges. 

However, according to the result in Table 3-2, an excellent accuracy has been achieved. 

TABLE 3-2 RESULTS OF THE ACCURACY FOR THE GIVEN SIGNAL AT DIFFERENT 
NOISE LEVELS 

Noise Level 

� 

!  5 10 20 30 40 50 

Missing Edge (%) 1.50 1.50 1.60 2.10 2.18 5.00 
Wrong Edge (%) 1.90 1.70 2.60 3.00 2.67 3.98 

Accuracy (%) 98.50 98.50 98.40 97.90 97.82 95.00 

 

3.3.4. Application of  Edge Detection for 2-D Image 

 
(a).  Original Image without Noise                     (b).  Degraded Image with Noise σ = 40 

Figure 3.14 2-D Image for the Edge Detect 
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The presented algorithm is applied to the 2-D image edge detection by line scanning scheme. 

Most of the object recognition algorithms are based on the edge, boundary or shape. If the LSNR 

is low, most of the traditional edge detection method will encounter problems with salt and 

pepper noise spots in the image in question. 

The test image is shown in Figure 3.14(a). The degraded and noisy observation is shown in 

Figure 3.14(b) with the noise variance σ equals to 40. The edge magnitude is 255. The LSNR is 

as low as 16 db. The detected edge by the proposed algorithm and the Sobel edge detector are 

both shown in Figure 3.15(a) and (b), respectively. The proposed method is more robust 

compared with Sobel edge detection algorithm. In Figure 3.15(b), there are more salt and peppers 

noise. 

 
(a). Edge Detected by Proposed Method                   (b). Edge Detected by Sobel Detector 

Figure 3.15 Comparison of Edge Detect by Proposed Method and Sobel Detector 

 
(a) Restored Image by Proposed Method                   (b) Restored Image by Wiener Filter 

Figure 3.16 Restored Images by Proposed Method and Adaptive Wiener Filter 
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The restored images are shown in Figure 3.16. Figure 3.16(a) is the result of the proposed method 

and Figure 3.16(b) is obtained through the use of the adaptive Wiener filter. In Figure 3.16(a), 

there are some line artifacts. They are caused by the line scanning scheme, which ignores the 

vertical/horizontal correlations of the signal. It is not a surprise that our results are better, since 

the proper prior knowledge is applied and the noise is already included in the model. According 

to the results, the proposed approach works well and is robust.  

3.4. Summary 

A novel Bayesian model select method for the piecewise constant signal is presented to identify 

the discontinuities in the signals based on the posterior evidence. The model select approach is 

based on the posterior distribution function. Avoiding direct evaluation of the posterior 

distribution in the state space of high dimensionalities, the model order is increased one by one 

according to the confidence threshold. By evaluating the so-called posterior evidence, the most 

likely model order is thus selected for a given signal. The proposed method is different from the 

algorithm in [42], in which Gibbs sampler could jump between the parameter subspaces of 

different dimensionalities. The proposed algorithm is robust as shown by the results of the 

simulations and experiments. The concept of LSNR is proposed in order to describe the local 

details of the signal and the noise. The presented method works well at low LSNR. The error rate 

is not equal to zero when LSNR is high, because the edge magnitude has no constraints when the 

piecewise constant signal are generated. Some edges possibly have very small magnitudes. 

A fast computational scheme of the normalization constant is proposed. It is an approximation of 

the real value of the constant, while it is very efficient. The simulation also showed that this 

formulation gives accurate results. Although the inference is based on the assumption that signal 

is piecewise constant, the proposed formulation should be easily generalized to suit other more 

general and common signals.  
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4 .  C h a p t e r  4  
 
S p a r s e  P r o b a b i l i s t i c  L i n e a r  M o d e l  a n d  
R e l e v a n c e  V e c t o r  M a c h i n e  f o r  P i e c e w i s e  
L i n e a r  1 - D  S i g n a l  

In Chapter 3, the identification of discontinuities for 1-D piecewise constant signals is presented. 

The identification is based on posterior evidence, instead of the usual methods, which are based 

on assumption that all the numbers of edges are equally possible. It is therefore more robust and 

computationally efficient. In this chapter, theoretical formulation will be developed to deal with 

1-D piecewise linear signals, without the restriction on them being constant.  

4.1. Relevance Vector Machine 

In the past decades, kernel methods inspired many innovative ideas in regression and 

classification. In this work, the kernel method is used to reconstruct the 1-D piecewise linear 

signal and identify the discontinuities based on the value of hyper-parameter as well. In this 

section, the kernel formulation and the kernel function is briefly reviewed. For a given noisy 

function with N uniform samples at points 
1{ }N

i
i

=
 and targets 

1{ ( )}N
i

g i
=

, we wish to acquire a 

model/function f(i) and estimate the noise component simultaneously. For this problem, the 

kernel method yields the following solution: 

1

( ; ) ( ', )
N

i

i

f i w i i w!
=

="
v

 (4.1) 

where ( ', )i i!  is a kernel function, effectively defining one basis function for each point in the 

given function f(i); i and i’ are different sampling points in f; wi is called the weight. For every 

basis function, there is a corresponding weight. The function f then is represented by a linear 
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combination of the multiplication of the basis functions and the corresponding weights. This is 

actually the GLM discussed in Chapter 2.  

Selecting a proper kernel function is important in all kernel methods. Normally, the kernel 

function should satisfy Mercer’s condition. Many kernel functions satisfy this condition and they 

are widely used in practice. Following the piecewise linear assumption stated in Chapter 3, the 

scaled linear kernel should be used. It is defined in Eq. (4.2): 

2( ', ) ( ' )i i i i! "= # {1,2,3... }N  (4.2) 

where η is the scale parameter, i is the sampling points and N is the length of the signal. 

The question of estimating f(i) in Eq. (4.1) could be changed to the Wolfe Dual problem 

according to the KKT condition [97]. Obviously, the N weights are not equally important. In an 

extreme situation, the given function g(i) can be simulated without any error by using all the N 

basis functions and N weights. Of course, different   

� 

v 
w  for the same given signal with different 

noise realization will be found, however it is highly undesired. One of the solutions could be 

given by using the Least Square Error (LSE) estimation: 

1ˆ ( )T
w K K Kg

!
=

v v

 (4.3) 

where K is the kernel matrix in Eq. (2.9). And the estimation of the original signal will be given 

by: 

ˆ ˆf Kw=
v v

 (4.4) 

The likelihood on its own does not limit the number of parameters in a model used to fit the data. 

In general, the more complex a model, the better is the fit to the data. This is called over-fitting as 

mentioned in the last Chapter. There is then a Penalized Least Square Estimation (PLSE) 

presented to overcome this problem. Since the PLSE adds a regularization constant before 
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calculation the inverse matrix in Eq. (4.3), say (KTK+

� 

! ), where 

� 

!  is a small positive constant and 

keeps the same for all basis function.  It is obvious that not all the basis functions are equally 

important based on the given base function to describe the data. Some of them could be 

eliminated from the model. In statistics, the idea of Auto Relevance Determination (ARD) is not 

very new. But until recently, Michaela Tipping integrates the ARD in the kernel inference and it 

was then called the Relevant Vector Machine[105][106][107]. It can identify the “important 

basis” to estimate the given noisy discontinuous functions. 

4.1.1. Likelihood Function and à priori  Probability 

The task of the discontinuous signal/function regression is to estimate the real signal/function f and 

preserve the discontinuities based on the given noisy observation g. Since how many edges within 

the given signal and where they are unknown, any point in the signal could possibly be a 

discontinuity. Eq. (4.1) describes a function f, then the likelihood function for the observation g is 

given by: 

2 2 2
2

1
( | , ) (2 ) exp( || ||)

2

N

g w g Kw! "!
!

#

= # #
v v v v

P  (4.5) 

where ( (1), (2),... ( ))Tg g g g N=
v   is an N×1 vector, 1( ,.... )T

N
w w w=
v . K is an N×N kernel matrix and 

every element is determined by ( ', )i i!  according to Eq. (4.2). The Maximum Likelihood (ML) 

estimate of the parameters actually will yield the LSE solution and often causes severe over-

fitting as discussed above. The weight coefficients are assumed to be an explicit prior probability 

distribution in this work. By evaluating the hyper parameters, which control the prior probability 

distribution, kernels, which are more important and relevant for the given data, are selected. 

The popular choice for the distribution over the weight coefficient is the independent zero mean 

Gaussian distribution [102] [106]: 
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i=1

N

#  (4.6) 

1 2{ , ,... }
N

! ! ! !=
v  is a vector of N hyper-parameters. Importantly, there is an individual hyper-

parameter associated independently with every weight. These hyper-parameters will control the 

complexity of the model. 

The hyperpriors over !v  need to be defined, as well as the variance of the noise. Berger suggested 

that these parameters are scale parameters, which obey the Gamma distributions in[106][107]. 

The hyperprior should also be non-informative, since no knowledge is given about where the 

discontinuous points are and which kernels are important. 1
!

"v  is initialized such that the wv  will 

have a wide range, or large variance according to Eq. (4.6). Then one of the straightforward prior 

for the hyper prior is that: 

  

� 

p(!
i
) =

1

N
  (4.7) 

More generally, a Gamma distribution can be used for the hyper-parameters, which is given by 

[106]: 

    

� 

p(
v 
! ) = "(!

i
| a,b)

i=0

N

#   (4.8) 

  

� 

p(!) = "(! | c,d)   (4.9) 

where β = σ-2. In order to use the Gamma distribution to approximate a uniform distribution, small 

values for the parameters in the Gamma distribution should be used, say a = b = c = d =10-6.  

There are two reasons that the Gamma distribution is preferred:  

a). The support of the Gamma distribution is from zero to positive infinity. This is 

convenient to simulate events involving only positive values.   
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b). The Gamma distribution is compatible to the Gaussian distribution. Both of them are in 

exponential form.  

The prior distribution of the hyper-parameters !v  is shown in Figure 4.1. 

 

Figure 4.1  Distribution of 

� 

!  with Different Parameters 

Every hyper-parameter would typically control one corresponding weight, which associates with 

each point in the given signal. If it is evident that the data supports such a prior distribution 

hypothesis, using a broad prior over the hyper-parameters allows the posterior probability mass to 

concentrate at very large values for some of these hyper-parameters. In consequence, the 

posterior probability of the associated weights will be concentrated at zero, thus effectively 

“switching off”’ the corresponding inputs, and so deeming them to be “irrelevant”. The remaining 

weights are the so-called “Relevant Vector”[107]. By learning from the noise data, those points, 

which are more important, can be found and used to reconstructed the original signal. Actually, 

those points are the discontinuous points.  

4.1.2. Posterior Distribution and Evidence 

After having defined the prior, Bayesian inference proceeds by computing. In order to estimate 

the original signal 
  

� 

v 
f , the weights   

� 

v 
w  should be determined. According to Bayesian rule, the 
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posterior distribution of weights is: 
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|
v 
g ) =

P(
v 
g |

v 
w ,

v 
! ,"

2
)p(

v 
w ,

v 
! ,"

2
)

P(
v 
g )  (4.10) 

where   

� 

v 
w  is the weights,   

� 

v 
!  is the hyper-parameter which controls the distribution of the weight 

which is defined in Eq. (4.6) and Eq. (4.8), σ2 is the variance of the noise and 
  

� 

v 
g  is the observed 

degraded signal. However, the posterior 
    

� 

p(
v 
w ,

v 
! ,"

2
|
v 
g )  in Eq. (4.10) cannot be computed directly 

since the normalizing integral on the right-hand-side cannot be determined. Fortunately, Eq. (4.10) 

could be decomposed as [106]: 
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2
|
v 
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The first term in the right hand side of Eq. (4.11) is the posterior distribution of weights   

� 

v 
w , which 

can be done analytically. Substituting Eq. (4.5) and (4.6) into Eq. (4.12): 
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where the posterior covariance and mean are [106]: 

2 1( )T
K K A!

" "
# = +   (4.13) 

2 T
K gµ !

"
= #

v

  (4.14) 

where A=diag(
1 2
, ,...

N
! ! ! ). The penalized parameter is determined by A, however, now different 

wi may have different regularization, which is different from the penalized LSE estimation. 

Then the problem of learning becomes to find a hyper-parameter posterior to maximize 

    

� 

p(
v 
! ,"

2
|
v 
g )#

    

� 

P(
v 
g |
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! ,"

2
) p(

v 
! ) p("

2
) . As hyperprior is uniformly distributed, the only need is to 
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maximize the term 
    

� 

P(
v 
g |

v 
! ,"

2
) , which is computable and given by [106]: 
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 (4.15 ) 

This quantity is known as the marginal likelihood, also referred to as the “evidence of hyper-

parameters” by Mackay [102]. 

The value of αi and σ2 which can maximize Eq. (4.15) is wanted, but it cannot be obtained in 

closed form. The procedure follows Type-II maximum likelihood method. It follows that [105]: 

    

� 

L = logP(
v 
g | log

v 
! ,log") + log p(log! i) + log p(log")

i=0

N

#  (4.16) 

Obtaining the first derivatives of this value with respect to α and σ2 and set them to zero, the re-

estimated values are then given by [106][107]: 

2

1new i ii
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" #
=   (4.17) 
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=

#$ # $

v

 (4.18) 

The learning algorithm thus proceeds by repeated application of (4.17) and (4.18), concurrently 

with the updating of the posterior statistics !  and µ  from (4.13) and (4.14), until the maximum 

of the updates of all the αi is smaller than some given value, say 10-6. Since 2( | , )g ! "
v

P  is in the 

form of Gaussian distribution, this results will guarantee a unique maximum for gv [106], which is 

desirable for most of the tasks. With such a scheme, the ill-conditioned problem becomes well-

posed, but the Hessian matrix in Eq. (4.13) may not exist if the hyper-parameter is not properly 

selected. The selection of the hyper-parameter η is an important issue here. The optimal value of 
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η will achieve the compromise between the sharpening and smoothing. In order to find the best 

value of η, the prior knowledge of the noise should be used. Some of the existing methods can 

provide the estimation of noise variance, such as [28]~[31]. Those methods can be applied to 

estimate the noise variance, and then to obtain 2
!̂ . In order to achieve a compromise between the 

sharpening and smoothing, 2 2ˆ| |R ! != "  is applied as the cost function to find the best η, where 

2
!̂  is the estimate of the noise variance and 2

!  is the noise variance in Eq. (4.10). Further 

discussion on the optimization of η in 2D applications will be presented in Chapter 5. 

4.2. Occam’s Razor and Automatic Relevance Determination 

There is a general philosophical principle known as Occam's razor [103] ~ [104] for model 

selection, which is highly influential when applied to various scientific theories. Occam's razor is 

a logical principle attributed to the mediaeval philosopher William Occam, which is originally 

stated in Latin in 14th century: 

Pluralitas non est ponenda sine necessitate. 

Entities should not be multiplied unnecessarily.  

-“Occam's razor" principle attributed by W. Occam. 

This principle states that one should not make more assumptions than the minimum needed. This 

principle is often called the principle of parsimony. It underlies all scientific modeling and theory 

building. It admonishes us to choose from a set of otherwise equivalent models of a given 

phenomenon the simplest one. In any given model, Occam's razor helps us to "shave off" those 

concepts, variables or constructs that are not really needed to explain the phenomenon. By doing 

that, developing the model will become much easier, and there is less chance of introducing 

inconsistencies, ambiguities and redundancies.  

In light of Occam's razor, unnecessarily complex models should not be preferred to simpler ones. 



Weimiao YU Bayesian Approaches for Image Restoration 

ME Department of National University of Singapore 
73 

When there are two competing models, which make exactly the same predictions, the one that is 

simpler is the better. The Bayesian kernel inference in the last section can achieve a sparse 

solution based on the discontinuous points in the function. It is similar to a situation when a 

person observes a piecewise linear signal, those significant points to represent the signal will be 

automatically determined.  

The Occam’s razor is significant to achieve the sound solution. If several models are compatible 

with a set of observations/data, Occam's razor advises us to select the least complex explanation. 

This can be simply explained that the probability of a too complex model, which has more free 

parameters, is generally lower than the probability of a simple model. 

The given problem in this Chapter is actually a data modeling problem. Two levels of inference 

can often be distinguished in the task of data modeling as stated in Section 3.2.2. At the first level 

of inference, a particular model is assumed to be true, and the model can be fitted to the data. 

Typically a model includes some free parameters; fitting the model to the data involves 

determining what values those parameters should probably take based on the given data. The 

results of this inference are often summarized by the most probable parameter values. This 

analysis is repeated for each model. The second level of inference is the task of model 

comparison or model selection. Here the models will be compared in light of the data, and assign 

some sort of preference or ranking to the alternatives. Bayesian methods, including RVM, are 

able to consistently and quantitatively solve both the inference tasks. The explanation is below: 

 Model fitting: By looking at Eq. (4.12), it is actually posterior = (likelihood × prior) 

/evidence. For a given hyper-parameters, find the best value of the hyper-parameters for the 

given problem. 

 Model comparison: At the second level of inference, find out which model is most plausible 

for the given data. The posterior probability of each model is given as P 2( , |g)! "
v
∝ 
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P 2(g| , )! "
v P ( )! p 2( )! . Notice that here P(σ2) and P(α) are the prior distributions of the 

hyper-parameters, which are assumed to be of uniform distribution, so their effects can be 

ignored. The term p( gv |α,σ2) is important, which is evidence in Eq. (4.12). 

The evidence is the normalizing constant given by: 

    

� 

p(
v 
g |! ," 2

) = p(
v 
g |

v 
w ," 2

)# p(
r 
w |! )d

r 
w  (4.19) 

The posterior  2 2( | , , ) ( | , ) ( | )w g g w w! " " !#
v v

P P P  will have a strong peak at the most probable 

value of 
MP
w . The evidence is the accuracy of the model for the given data multiplied by the 

Occam factor, which is to describe the complexity of the model. The maximization of the 

evidence is actually to achieve a compromise between the accuracy and the complexity of the 

model. If the model is too complex, i.e. including all kernels, it will be penalized by the Occam 

factor. The ARD introduces the hyper-parameter to control the complexity of the model such that 

the Bayesian kernel can make most of the αi tend to infinite value and then “switch off” those 

corresponding kernels. 

The prior knowledge of the function is integrated into the model when the scaled linear function 

is selected as the kernel function. The model is assumed to be the most complicated one first, i.e., 

every point is assumed to be equally possible to be an edge point in the function. By applying the 

ARD analysis and RVM inference, most of the irrelevant kernels can be removed while keeping 

the relevant ones, which are actually the discontinuous points or discontinuities. The value of the 

hyper-parameter αi will also indicate where the discontinuous points exist in the function. 

4.3. Experiments of  Sparse Bayesian Kernel for 1-D Piecewise 
Linear Signals 

In this section, the Bayesian kernel formulation is applied to the given piecewise linear signal as 

described in the last section. Before proceeding, some criteria are needed to evaluate the effects 
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of discontinuity preservation and data fitting.  

One criterion is commonly used to evaluate the fidelity of estimation, i.e. the infinity norm, which 

is defined by: 

'
ˆmax | '( ) '( ) |fL f i f i     i=1,2,3...N-1!

= "  (4.20) 

where 

� 

f ' is the first order differentiation of f. Two new criteria are defined to evaluate whether 

the discontinuous points are well preserved. They are given as follows. For a given point, which 

is a step edge, we define: 

ˆ'( ) '( )

when for step
'( )

i M

j i M

S

f i f j

L      bd(i)=1 
f i

+

= !

!

=

"

 (4.21) 

Actually, for each point i, a value of LS can be calculated. The index (i) is omitted here, since this 

value is only important at the edge points. In Eq. (4.21), the change in gradient within the region 

of ±M sample points is measured. If f(i) is a step edge, f’(i) will have a higher gradient. This 

large gradient should be preserved in ˆ ( )f i . If an edge is preserved by the proposed algorithm, LS 

will be near to zero. For a roof edge, it is similar and is given below: 

ˆ''( ) ''( )

when for roof
''( )

i M

j i M

R

f i f j

L    bd(i)=1 
f i

+

= !

!

=

"

 (4.22) 

Similarly, index (i) is also omitted here. For the non-edge points, e.g. bd(i)=0, LS and LR might be 

infinite, since 

� 

f ' (i)  and 

� 

f ' ' (i)  could be zero. So LS and LR will not be calculated for bd(i)=0. The 

value of LS and LR  will indicate the percentage of a step/roof edge within the region of ±M, 

which is not preserved by the proposed algorithm, when compared with the original signal. M  is 

equal to 2 in the simulations. 
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In the following experimental section, the original signal f(i) is shown by bold red dash line, the 

noisy signal g(i) is shown by light black line, and finally the estimated signal 

� 

ˆ f (i)  is shown by 

bold blue line.  

 
Figure 4.2 Roof Edge Experimental Result: Noise 

� 

!  = 10. Total 6 Discontinuous Points in the 
Signal; Number of Used Kernels is 9; Estimated Noise Level 

� 

ˆ !  = 9.63. RMS of the 
Fitting is 2.64; 

'fL
! =6.97. Average of 

R
L  at Those 6 Points is 10%. 

 
Figure 4.3 Roof Edge Experimental Result: Noise 

� 

! =40. Total 6 Discontinuous Points in the 
Signal; Number of Used Kernel is 7, Estimated Noise Level is 

� 

ˆ ! = 39.10. RMS of the 
Fitting is 39.26; 

'fL
! =23.32. Average of 

R
L  at Those 6 Points is 17% 
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The first experiment is a signal with only six roof edges. The estimated signal at different noise 

levels is shown in Figure 4.2 and Figure 4.3. Tables 4-1 and 4-2 show the edge preserving effect 

of the Bayesian kernel approach. The noise is removed and the sharp roof edges are preserved as 

shown in the two figures. 
R
L  of both the simulation results are low, averaging, about 90% and 

83% of “discontinuities” in Figure 4.2 and 4.3 are preserved for a total of 6 discontinuous points, 

respectively. 

TABLE 4-1 DISCONTINUTY PRESERVATION FOR ROOF EGDE WITH NOISE σ=10 

(FIGURE 4.2) 

Edge Index 

� 

ˆ f ' ' ( j)

j = i!M

i+ M

"  

� 

f ' ' ( j)  

� 

L
R  

1 3.30 2.70 18% 
2 -2.81 -2.70 4% 
3 5.57 5.04 10% 
4 -5.21 -5.04 3% 
5 -5.23 -5.21 0.4% 
6 4.13 5.21 26% 

TABLE 4-2. DISCONTINUTY PRESERVATION FOR ROOF EGDE WITH NOISE σ=40 

(FIGURE 4.3) 

Edge Index 

� 

ˆ f ' ' ( j)

j = i!M

i+ M

"  

� 

f ' ' ( j)  

� 

L
R  

1 3.47 2.70 22% 
2 -2.63 -2.70 3% 
3 4.88 5.04 3% 
4 -4.62 -5.04 9% 
5 -3.62 -5.21 44% 
6 4. 5.21 21% 

It is interesting to note that 
R
L  of edge points 1 and 6 in both Table 4-1 and Table 4-2 are large. 

This observation simply indicates that more gradient/discontinuity at those points is lost. The 

explanation is that those points are close to the ends of the signal, so there is not enough 

information to determine a better weight for those points. Second possible explanation for losing 

the discontinuities is that even though the discontinuities are preserved, however they are shifted, 

and they are not within the defined neighborhood of ±M. The bottom-figures in Figure 4.2 and 

Figure 4.3 are 1/αi. The clear sharp peaks (points circled) indicate that those points are the 
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discontinuous points in the given function. This proposed method can therefore be effectively 

applied for the discontinuity identification tasks too. When the noise level increases, both the 

RMS and 
'fL

!  both become larger, making it more difficult to achieve a better estimation. At the 

same time, experimental results show that the Bayesian kernel also gives an accurate estimation 

of the noise variance σ, as stated in the title of each figure. 

 
Figure 4.4 Step Edge Experimental Result: Noise 

� 

! =10. Total 3 Discontinuous Points in the Signal; 
Number of Used Kernel is 14; Estimated Noise Level 

� 

ˆ ! = 9.67. RMS of the Fitting is 
2.63; 

'fL
! = 12.14. Average of 

� 

L
S
 at Those 3 Points is 3%. 

 
Figure 4.5 Step Edge Experimental Result: Noise 

� 

! =40; Total 3 Discontinuous Points in the Signal; 
Number of Used Kernel is 9; Estimated Noise Level is 

� 

ˆ ! = 39.19. RMS of the Fitting is 
13.84; 

'fL
! = 87.069. Average of 

� 

L
S
 at Those 3 Points is 22.5%. 
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The results of the Bayesian kernel method for the step edges with different noise levels are shown 

in Figure 4.4 and 4.5. The analysis is similar to that of the roof edge, amidst some notable 

differences. Firstly, the step discontinuities are more obvious and the gradients of those points are 

much larger than those found in the roof-edges shown in Table 4-1 and 4-2. 
'fL

!  of step edge are 

also larger, since the singularity of those points are more severe, while 
s
L  in Table 4-3 and Table 

4-4 remains comparable to 
R
L  in Table 4-1 and Table 4-2.  

TABLE 4-3 DISCONTINUTY PRESERVATION FOR STEP EGDE WITH NOISE σ=10 
(FIGURE 4.4) 

Edge Index 

� 

ˆ f ' ( j)

j = i!M

i+ M

"  

� 

f ' ( j)  

� 

L
S  

1 -156.24 -151.97 3% 
2 227.18 225.72 0.6% 
3 -110.72 -105.19 5% 

TABLE 4-4 DISCONTINUTY PRESERVATION FOR STEP EGDE WITH NOISE σ=40 
(FIGURE 4.5) 

Edge Index 

� 

ˆ f ' ( j)

j = i!M

i+ M

"  

� 

f ' ( j)  

� 

L
S  

1 -128.88 -151.97 15% 
2 272.5 225.72 21% 
3 -71.70 -105.19 32% 

Some discontinuities in the reconstructed signal ˆ ( )f i  is lost. Note that in Figure 4.5, the 1/αi does 

not have clear peaks at edge points 1 and 3, while those peaks are more obvious in Figure 4.4. 

The peak of edge point 2 in Figure 4.5 is also smaller. They are caused by the increase in the 

noise level; higher noise level would make it more difficult to identify the discontinuities. 

The last simulation is carried out with a signal containing both the steps and roof edges. The 

results are shown in Figure 4.6 and Figure 4.7. The results are also encouraging at different noise 

levels. From the 

� 

1/!
i
 plots in both cases, only the step edge have clear peaks. This is due to the 

fact that the step edges involve more abrupt changes than that of the roof edges, so that they will 

dominate the hyper-parameter space. Hence, in a signal containing both kinds of edges, it would 
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be more difficult to detect the roof edges just by looking at the values of 1/αi. 

 
Figure 4.6 Two Types of Edges Experimental Result: Noise 

� 

! =10. Total 1 Step Edge and 3 Roof 
Edges in the Signal; Number of Used Kernel is 13; Estimated Noise Level 

� 

ˆ ! = 10.67. 
RMS of the Fitting is 5.03; 

'fL
!  = 32.78. Average of  

� 

L
S
 and 

� 

L
R

 at Those 4 points is 
16%. 

 
 Figure 4.7 Two Types of Edges Experimental Result: Noise 

� 

! =40. Total 1 step Edge and 3 Roof 
Edges in the Signal. Number of Used Kernel is 8; Estimated Noise Level 

� 

ˆ ! = 39.53. 
RMS of the Fitting is 11.12; 

'fL
! = 73.68. Average of 

� 

L
S
 and 

� 

L
R

 at Those 3 Points is 
13%. 
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Comparing the value of 
R
L  for edge point 3 in Table 4-5 and Table 4-6, more discontinuities are 

lost in Table 4.5. This result is mainly caused by the shift of the discontinuous point. The abrupt 

changes still exist based on visual observation, while it is not within the neighborhood ±M. 

TABLE 4-5 DISCONTINUTY PRESERVATION FOR STEP AND ROOF EGDE WITH 
NOISE σ=10 (FIGURE 4.6) 

Edge Index 

� 

ˆ f ' ' ( j)

j = i!M

i+ M

" or

� 

ˆ f ' ( j)

j = i!M

i+ M

"   

� 

f ' ( j)  or 

� 

f ' ' ( j)  

� 

L
S  or 

� 

L
R  

1 -163.96 -143.4 14% 
2 6.97 7.19 3% 
3 -6.97 -4.85 44% 
4 -10.34 -10.03 3% 

 

 TABLE 4-6 DISCONTINUTY PRESERVATION FOR STEP AND ROOF EGDE WITH 
NOISE σ=40 (FIGURE 4.6) 

Edge Index 

� 

ˆ f ' ' ( j)

j = i!M

i+ M

" or

� 

ˆ f ' ( j)

j = i!M

i+ M

"   

� 

f ' ( j)  or

� 

f ' ' ( j)  

� 

L
S  or

� 

L
R  

1 -126.05 -143.40 12% 
2 6.51 7.19 9% 
3 -5.68 -4.85 17% 
4 -11.47 -10.03 14% 

 

4.4 Summary  

The Bayesian kernel method for discontinuous signal reconstruction based on the piecewise linear 

assumption is presented. The mathematical model of the discontinuous signals is given based on the 

assumption that lower order derivatives of the signal are more significant. The proposed Bayesian 

kernel is able to determine the model order and fit the data simultaneously according to the given 

noisy data. The global fitting errors 
'fL

!  are small. Estimated noise σ is accurate. Two new criteria to 

evaluate the edge preserving effects are also defined, e.g.
S
L  and 

R
L , which can describe the 

percentages loss of the discontinuities, i.e. discontinuities not detected, using the proposed 

approach, using a pre-defined neighborhood M.  
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Based on the experimental results, the Bayesian kernel is proven to be able to successfully 

smooth the piecewise linear signals and at the same time preserve most of the discontinuities. It 

helps to resolve the two conflicting interests in image processing, i.e., Noise Removal 

(smoothing) and Edge Detection (discontinuity preservation). On the average, about 80% of the 

discontinuities could be preserved in the estimated discontinuous signals at different noise levels. 

The value of 1/αi could be used to determine the location of the discontinuous points in the 

signals as well. It is promising for real applications. 

The learning procedure of the Bayesian kernel is slower than the traditional smoothing procedure, 

as it is a problem of the order of O(N3). The inverse of the Hessian could be the restriction to the 

proposed algorithm. The training samples cannot be too many. In practice, when the number of 

sample points is more than 2000, Hessian matrix will easily become ill-conditioned. This is also 

reported in by [106] and [108]. The fast algorithm [108] can relieve this difficulty. In the fast 

training algorithm, Hessian will generally be smaller than N×N, while training sample points still 

cannot exceed 4000 [108].  
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5 .  C h a p t e r  5  
 
S p a r s e  K e r n e l  I m a g e  N o i s e  R e m o v a l  w i t h  
E d g e  P r e s e r v a t i o n  

Thus far, the theoretical basis for 1-D piecewise linear signals is developed in the previous 

chapters. Images are 2-D signals. In this regards, theory will be extended on the above 

development to treat the additional dimension. With the additional dimension, the increase in data 

size will be a prime consideration. “Travelling window” will be developed to work on Regions of 

Interest, which are subsets of the whole image, one by one. Noise filtering, especially for blurred 

images, is an ill-conditioned problem. To resolve this issue, and to improve the image quality, a 

novel cost function will be proposed, which has only one global minimum. This is made possible 

by the use of the “travelling windows”, the details of which will be presented in this Chapter.  

5.1. Relevance Vector Machine in Image Restoration 

The two previous chapters presented the approaches to identify and reconstruct the discontinuous 

signals in 1-D format. From the experimental results presented in Chapter 4, the RVM/Sparse 

Bayesian Kernel can reconstruct the 1-D discontinuous signal after smoothing (or noise removal) 

and at the same time preserve the edges. However, there are still some open issues in image 

restoration tasks as images are in fact 2-D signals. Based on the knowledge gained from working 

with 1-D signals, a novel image restoration method based on the Sparse Bayesian Kernel in 

spatial domain will be presented in this Chapter. The technical details will be discussed and then 

the restoration results will be presented in the experimental section. 

5.1.1. Window and Local Piecewise Linear Assumptions 

As mentioned in Chapter 2, not all the 2-D signals are eligible to be qualified to be an image. 
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“Eligible” here means that the 2-D signal must be able to be interpreted and understood by human 

beings. From the Markov Random Field (MRF) point of view, it has the similar implication. 

Although there are many configurations of random field, only a small portion of them is 

meaningful to human beings. An important topic in MRF image restoration is the study of the 

potential function V in Eq. (2.27). A proper potential function will give satisfactory restoration 

result. However, the potential function is only applicable within a given neighborhood system, 

which is generally small in size; 4- and 8- neighborhood systems are commonly used in the MRF 

restoration. Theoretically, bigger neighborhood system could be applied. However, since the 

combinations of the clique increase dramatically with the increase in neighborhood size, the 

calculation will be very intensive, sometimes; it could become infeasible if the size becomes too 

large. 

Model based image processing has its advantages and is popular in the past decades. Among them, 

the piecewise constant and piecewise linear assumptions include Piecewise Image Model (PIM) 

and Local Image Model (LIM) in [44]. PIM also includes the Piecewise Constant (PICO) and 

Piecewise Linear (PILI). LIM includes the Local Lonotonicity (LOMO) and Local 

Convexity/Concavity (LOCO).  Common images are generally object-based. For example, an 

image normally contains several objects, which have the same or similar gray levels. For example, 

there are several major objects in the camera man image shown in Figure 5.1 (a), such as the 

camera man, a camera with tripod and some buildings in the background. For the camera man, 

the face, his coat and pants are three objects, which have similar gray levels. 

In the literature review presented in Section 1.3.2, other noise removal methods have been 

discussed. Methods based on Fourier Transform are difficult to integrate with the local 

assumptions, since Fourier Transform does not have resolution in time/spatial domain 

simultaneously. The explanations are. 

 Fourier transform can only identify some specified frequency that exists in the frequency 
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domain; however, it cannot determine when/where an edge happens.  

 At the edge, an abrupt change in spatial domain causes changes over a wide range in 

frequency. This makes edge preservation in frequency domain difficult. The common 

aftermath of frequency domain methods, such as the low pass filter or band pass filter, is the 

“ring” artifacts in the restored image, which is highly undesirable. 

Wavelet is another useful tool in image restoration task. It has resolution in both spatial and 

frequency domain, however, some pertinent questions are still without good answers, such as the 

selection of the mother wave and the threshold value of the wavelet coefficients for noise removal. 
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(b)                                 (c) 

 Figure 5.1 Local Piecewise Constant and Piecewise Linear Assumptions for the Cameraman. (a). 
The Rectangle Indicates the Window Size. (b) Shows the Red Rectangle Portion in 3D. 
(c) Shows the Blue Rectangle Portion in 3D. (Window Size=10) 

Based on the above review and analysis of existing image model, the Locally Piecewise model 

(LP) for the images is presented in this work. Piecewise here includes both piecewise constant 
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and piecewise linear. It is true that image itself may not globally fit the piecewise assumption in 

spatial domain, however, within a small Region Of Interest (ROI); it could be approximated by 

the LP model according to Taylor theorem [109]~[110]. Figure 5.1 and 5.2 show two such small 

regions. This small region is called window indicated by the red and blue rectangle in Figure 5.1 

and 5.2. Window is denoted by W in this work. From the Figure 5.1(b), 5.1(c) 5.2(b) and 5.2(c), 

the image within the window are actually piecewise constant or piecewise linear. The local 

piecewise assumption is important for the edge preservation. Therefore it is assumed that the 

images are locally piecewise linear or piecewise constant within the window W.  
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(b)                                      (c) 

Figure 5.2. Local Piecewise Constant and Piecewise Linear Assumptions for the Lena. (a). The 
Rectangle Indicates the Window Size. (b) Shows the Red Rectangle Portion in 3D.  (c) 
Shows the Blue Rectangle Portion in 3D. (Window Size=10) 

5.1.2. Inverse of  the Hessian Matrix 

The LP model simplifies the image and process it within the small window W. Higher order terms 

in Eq. (3.2) could be ignored within the window. This brings us the convenience and efficiency in 
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the subsequent calculation. However, the Sparse Bayesian Kernel cannot be applied for the whole 

image due to the following reasons: 

 The image may be locally piecewise, but not necessary globally as stated above. The 

assumption of global piecewise is dangerous and questionable. Furthermore it could cause 

the loss of some detailed information. The locally piecewise constant and piecewise linear 

assumptions also indicate that a reasonable simple model could be used to fit the given noisy 

image within the window only. This local simplification integrates the Occam’s razor in the 

proposed approach. Image, which is too complex, would be considered as noisy image. 

 In Eq. (4.13), the inverse of the Hessian matrix needs to be calculated. If the restored image 

is estimated by using the whole image, the calculation is too intensive, and sometimes can be 

infeasible since the calculation of the inverse of a square matrix is in the order of O(N3). For 

example, for a 256×256 image as shown in Figure 5.1(a), we will need to calculate the 

inverse of the Hessian matrix of 65536×65536. The calculation is very burdensome. 

Furthermore, such a large matrix is normally ill-conditioned. 

The inverse of the large matrix is a topic in Applied Mathematics, and it will not be discussed in 

details here. Since the presented piecewise assumption is only made within a given window, the 

operation of finding the inverse of a large Hessian matrix can be avoided. Instead, the large 

Hessian matrix is decomposed into many small matrices using multiple windows. This scheme is 

highly efficient and fast. 

5.2. Local Regularization and Global Cost Function 

5.2.1. Selecting Kernel Function 

Based on the LP assumption, a proper kernel function should be selected. The kernel trick can 

map the signal to the hyperspace as mentioned in Section 2.2. In the last Chapter, the kernel 
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function in Eq. (4.2) is defined based on the piecewise assumption in 1-D. Here a similar 

definition in 2-D is given in Eq. (5.1). For a pixel at coordinates (i, j) within the determined l×l 

window, the kernel function is define by: 

2 2[( , ), ( ', ')] ( ') ( ')i j i j i i j j! "= # + #   ( )i,j ! 2{1,2,3... }l  (5.1) 

where (i, j) and (i’, j’) are two different pixels in the window and η is a non-zero scale factor. η is 

an important parameter, which is essential in achieving satisfactory restoration effects. Its proper 

value would be a good compromise between the noise and the edge preservation. The 

optimization of its value will be discussed later. 

Note that the authors in [34] concluded that using a non-standard norm function for the MAP 

solution would be helpful in edge preservation, however, the reason on why this was so remains 

unclear. The kernel function in Eq. (5.1) is actually a Norm function since it satisfies the three 

requirements of Norm function, viz. non-negativity, triangular inequality and normality. 

Observing Eq. (5.1), the defined kernel function is actually a Norm function with values between 

1 and 2. If one term in the square root equals to zero, then it becomes a 1-Norm function, 

otherwise, it is a hybrid Norm function between 1-Norm and 2-Norm. Based on the piecewise 

assumption and the use of window, the given kernel function will smooth the undesired noise 

while keeping the edges preserved within the window by selecting a proper η. 

5.2.2. Window Size and Kernel Matrix 

The size of the window will depend on the image itself and how it fits the piecewise linear 

assumption. Generally, if the image is complicated, smaller window is preferred. If the image is 

simple, larger window could be employed. However, the computational issue of the inverse 

Hessian Matrix needs to be considered. When the window is too big, the computation of the 

inverse of the Hessian Matrix will be slower. A common image is normally not isotropic, while 

the window applied for the image restoration is a square region, say l×l.  
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After determined the window size, the kernel matrix K is: 

[(1,1), (1,1)] [(1,1), (1, 2)] ... [(1,1), ( , )]

[(1, 2), (1,1)] [(1,2), (1, 2)] ... [(1, 2), ( , )]

[( , ), (1,1)] [( , ), (1, 2)] ... [( , ), ( , )]

l l

l l
K

l l l l l l l l

! ! !

! ! !

! ! !

" #
$ %
$ %=
$ %
$ %
& '

M M M M
 (5.2) 

where the kernel function !  is defined in Eq. (5.1). The kernel matrix K is an l2×l2 matrix. 

Kernel matrix when η = 1 (Eq. (5.1)) is shown in Figure5.3.  

 
Figure 5.3 The Kernel Matrix Applied in Learning Process (

� 

!=1.0) 

K is a symmetric matrix. Furthermore, the defined kernel function makes the kernel matrix a 

hybrid of linear and quadratic one. In other word, the kernel trick projects the sub-image within 

the window into a hybrid of linear and quadratic hyperspace depending on the locations of the 

pixels. 

5.2.3. Hyper-parameter Tuning 

The kernel learning is applied to the sub-image within the window. Every pixel (i, j) will have an 

associated weight w(i, j) and a corresponding hyper-parameter α(i, j) to determine its distribution. 

Thereafter the learning is to find the best weights to describe the given image 

� 

ˆ f , which is: 
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(5.3) 

For simplicity, the above equation could be written as: 

f̂ Kw=

v
v

  (5.4) 

The task of edge preserving robust noise removal procedure is to maximize the posterior 

distribution within the window W according to Bayesian rule:   

    

� 

p(
v 
w ,

r 
! ,"

2
|
v 
g )

W

=

P(
v 
g |

v 
w ,

r 
! ,"

2
)

W

p(
v 
w ,

r 
! ,"

2
)

W

P(
v 
g )

W

 (5.5) 

For clarity, the notation W is omitted. In addition, the Kernel Learning described in this section 

concerns the Region of Interest in a window only. The hyper prior distribution of the hyper-

parameter is given by: 

  

� 

p(! i, j ) =
1

l
2   (5.6) 

where l is the size of the window. Finally, such inference will give us the estimation of the given 

weights within the window as: 

    

� 

p(
v 
w |

v 
g ,

r 
! ,"

2
) =

P(
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g |

v 
w ,"

2
) p(
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w |
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! )

P(
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g |
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! ,"

2
)   

 
1/ 2( 1) / 2 11

(2 ) exp{ ( ) ( )}
2

N T
w w! µ µ

"" + "
= # " " # "  (5.7) 

where: 
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2 1( )T
K K A!

" "
# = +   (5.8) 

2 T
K gµ !

"
= #

v

  (5.9) 

A=diag[

� 

!11,!12,..!1l ,! 21,! 22,! 2l ...! ll
]. Some of the weights on the right-hand side of Eq. (5.4) 

will be eliminated according to the given scale factor η after the learning procedure. The sub-

image within the window will be reconstructed by only using the non-zero weights according to 

Eq. (5.4). In other word, the undesired non-smoothness will be removed according the scale 

factor η. The optimization of Eq. (5.5) is only local regularization. The scale factor η is a 

significant parameter. If η is too large, the noise will not be sufficiently removed from the image. 

It is also called over fitting. However, if η is too small, then the image will be over-smoothed, 

also known as under fitting. The original content of the image will be damaged. The globally 

optimized η must achieve the compromise between the noise removal and the edge preservation 

aims. 

The prior knowledge tells us that the undesired noise is i.i.d Gaussian distributed. The noise term 

in Eq. (2.1) is of zero mean with unknown variance. However, in order to remove this undesired 

noise in the image, how severe the noise is, e.g. the variance, should be known such that it is 

possible to determine whether the non-smoothness is caused by the image content or the noise. In 

order to achieve a global optimization on η, the variance of the noise needs to be estimated. Since 

the added noise is i.i.d. Gaussian distributed noise, the estimation of the noise variance is not 

difficult. Some of the references provided different approaches, such as the Wiener filter [26] ~ 

[27], the Wavelet methods[29] and fast estimation of the noise variance [28], [30] and [31]. 

The strategy of edge preserved noise removal for image restoration is that when the 

discontinuities are smoothed, the smooth operator will smooth those discontinuities caused by the 

noise only, not the discontinuities that existed in the original image contents, e.g. edges, such that 

the edge can be preserved and noise is removed. The applied window will give the estimation of a 
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portion 

� 

ˆ f . Eq. (2.1) for the given sub-image can be written in a different way: 

( , ) ( , ) ( , )    {1 ,1 }e i j g i j f i j i l j l= ! " " " "  (5.10) 

However the real non-degraded image f(i, j) is unknown. Instead of using f, its estimation 

� 

ˆ f  is 

used. Then Eq. (5.10) becomes: 

ˆ( , ) ( , ) ( , )    {1 ,1 }e i j g i j f i j i l j l= ! " " " "  (5.11) 

where g is the noisy image and 

� 

ˆ f  is the estimation of f in Eq. (5.4). The estimation 

� 

ˆ f  is based on 

the LP assumption according to the kernel matrix given in Eq. (5.2). If 

� 

ˆ f  is a good estimation of f, 

then the variance 2
!

W
of e(i, j) within the given window should be close to the variance 2

n
!  of the 

global noise term 
n
e  in Eq. (2.1). Here again, the variance 2

n
!  of the global noise is also 

unknown, while it can be estimated, say 2
ˆ
n

! .  

 
Figure 5.4 The Non-overlap Window Scanning for the Estimation of the Local Variance 

According to the prior knowledge, the variance 2
!

W
of e(i, j) within every window can be 

calculated. Here 2

, k 
!

W
 is simplified as 2

!
W

, where k denote the kth windows. Different methods 

could be used to estimate the local variance. In this work, a line-scanning scheme is applied, as 
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show in Figure 5.4. The advantage of this scheme is that the entire image will contribute to the 

estimation of noise variance. Other approaches can also be employed such as the random window 

selection. 

The window travels across the whole image. There is no gaps and overlaps between different 

windows, as shown in Figure 5.4. For every window, a noise variance for the local fit can be 

calculated . The calculation of the local variance is: 

2 2 2

, k 2 2
1 1
1 1

2

2
1
1

1 1
( ( , ) ) ( ( , ))

1 ˆ        ( ( , ) ( , ))     {1 ,1 }

i l i l
j l j l

i i
j j

i l
j l

i
j

e i j e i j
l l

g i j f i j i l j l
l

! µ

= =
= =

= =
= =

=
=

=
=

= " =

= " # # # #

$ $

$

W

 (5.12) 

where 

� 

µ  is the local mean of the noise term. According to the prior knowledge, it is zero.  Please 

note that the local variance is actually a function of η, since 

� 

ˆ f  is a function of η. Based on the 

following theory, deduce the distribution function of 2

, k
!

W
 can be deduced. 

Theorem [111]: If the random variable e follows the standard normal distribution, i.e. the 

Gaussian distribution with zero mean and unit variance, one can draw a sample e1, e2,… 2
l
e  of size 

2
l  from this distribution and form the sum of squares: 

2

2 2 2 2

1 2
...

l
e e e! = + +   (5.13) 

The random variable 

� 

! 2 (chi-square) follows the probability density of the 

� 

! 2distribution with l2 

degrees of freedom: 

2

2 2
/ 2

2 / 2 1 / 2

2

(1/ 2)
( )

( / 2)

l
lf e

l

!! ! " "
=
#  (5.14) 
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And the mean and the variance of 
2!  is: 

2 2( )E l! =   (5.15) 

2 2 2 2( ( )) 2E E l! !" =  (5.16) 

Based on the above theorem, the distribution function of 2

, k
!

W
 can be deduced. Suppose that 

there are K windows to estimate the local fitting error and the noise term e ~ N(0, 2
!̂ ), then we 

get: 

2 2 2

, k

1

1
ˆ( )

 

K

k

E
K

! ! !
=

= ="W W  (5.17) 

4
2 2

2

ˆ2
( ( ))E E

l

!
! !" =

W W  (5.18) 

After the window has been made to travel through the image, K number of variances of the local 

fitting error can be obtained. The number of the given variance will be: 

( / ) ( / )K floor N l floor M l= !  (5.19) 

According to the central limit theory, when K is big enough, the distribution of 2

, k
!

W
 could be 

approximated by Gaussian distribution. For example, when the image size is 256×256 and the 

window size is 10×10, K will be 625. In order to achieve the best restoration result, an optimized 

value of the hyper-parameter η is needed through a global cost function, which will be presented 

shortly.  

As 

� 

ˆ f  is a function of η, the value of η will determine the fitting result. The global optimization 

will be based on the estimated global variance 2
ˆ
n

! . After K local variances is obtained, its mean 

and variance can be calculated according to Eq. (5.17) and (5.18). If a proper η is applied for the 
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noise removal, then it should remove the undesired noise and keep only the discontinuities in the 

original image. In other words, the removed part should be a Gaussian distributed noise term. For 

the 2

, k
!

W
, it should belong to N( 2

!̂ ,

� 

2!
4
l
2 ). The cost function for the global optimization will 

be: 

    

� 

R(
v 
f |!,

v 
g ) = arg  min(| E("

W ,k

2 ) # ˆ " n
2 | + | E("

W ,k

2
# E("

W ,k

2 ))#
2 ˆ " 

4

l
2

|)(5.20) 

Eq. (5.20) indicates that the optimized estimation of f is to select such a η, which can make the 

mean and the variance of variances for all local fitting as close as to the global variance possible. 

If the fitting noise term satisfied Eq. (5.20), it is only a necessary condition 

� 

ˆ f  is a good estimate 

of g. However, since both the image model and the fitting model are all locally piecewise, then 

Eq.(5.20) becomes a necessary and sufficient condition for 

� 

ˆ f  is a good estimate of g, e.g. the 

removed discontinuities are the undesired noise. The estimation of the global variance is essential 

to the fitting results. Fortunately, the existing methods [28] ~ [31] could provide us robust and 

accurate estimation of such parameter. Since 2

, k
!

W
~ N( 2

!̂ ,

� 

2!
4
l
2 ), there is only one maximum 

in such a Gaussian distribution function and there is only one global minimum in the cost 

function in Eq. (5.20). This property is useful, the solution is stable and the ill-conditioned 

problem could be solved for the image restoration.  

Eq. (5.20) uses the absolute value of the difference between 2( )E !
W

 and 2

n
! , however, the 

magnitude of 2

n
!  will have different consequences, which is illustrated in Figure 5.5. Suppose 

that the estimated global variance is 30, as shown by the red line in Figure 5.5. When η is too 

large, then 2( )E !
W

 is smaller than the estimated global variance, which is shown by the blue line 

with the highest peak. This is called over fitting. The image is over parameterized and the noise is 

not fully removed from the image. Conversely, when η is too small, and then 2( )E !
W

 is larger 
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than the estimated global variance, which is shown by the blue line with the lowest peak. This is 

known as under fitting. Some of the image contents will be lost. Hence, the proper value of η 

must be obtained. The optimization of Eq. (5.20) is not difficult, normal gradient approach, linear 

and nonlinear approach can successfully fulfill the task. 

 

 Figure 5.5 Under Fitting and Over Fitting of the Image  

According to the above procedure, the hyper-parameter is tuned according to the local fitting 

variances by using a sliding window and global estimated noise variance. As the window is made 

to travel across the image and it is applied on small regions of the image, one at a time, the 

boundary effects will exist. These effects are common in image processing using approaches 

based on window. In order to overcome the boundary effects, overlaps are needed when a 

window is moved from one region to the next one when performing noise removal. Note that this 

is different when the hyper-parameter η is tuned. The amount of overlap could be adjusted 

depending on needs. For example, if the window moves one pixel at each step, vertical and 

horizontal directions will have 90% of overlap and the diagonal will have 81% overlap.  
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5.4. Experimental Results 

In this section, the Bayesian kernel method for 2-D images is applied for the task of noise 

removal. In order to validate the proposed algorithm, four images are selected for the 

experiments. They are the “camera man”, “Lena”, “Lamp” and “Egg”. The experiments are 

applied under 4 different noise levels, ! = 5, 10, 15 and 20. Since a too big value of the hyper-

parameter will not truly fit the data, the value of η is from 0.1 to a bigger value and make sure the 

optimal value is in this region. The tuning range of the hyper-parameter η is from 0.1 to 30. The 

tuning procedure is described in the last section. Since it has been proven that the cost function 

will only have one minimum in Section 5.3.2, the steepest gradient method is applied for the 

optimization of η. At the same time, the results of other adaptive methods are presented for 

comparison, such as the Wiener Filter and Local Polynomial Approximation and Intersecting 

Confidence Intervals (LAP-ICI) in [47]. 
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 Figure 5.6 The Experimental Results of Cameraman σ =5 
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Figure 5.7 The Experimental Results of Cameraman σ =10 
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Figure 5.8 The Experimental Results of Cameraman σ =15 
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Figure 5.9 The Experimental Results of Cameraman σ =20 
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Figure 5.10 The Experimental Results of Lena σ =5 
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Figure 5.11 The Experimental Results of Lena σ =10 
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Figure 5.12 The Experimental Results of Lena σ =15 
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Figure 5.13 The Experimental Results of Lena σ = 20 
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Figure 5.14 The Experimental Results of Lamp σ =5 
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Figure 5.15 The Experimental Results of Lamp σ =10 
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Figure 5.16 The Experimental Results of Lamp σ = 15 
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Figure 5.17 The Experimental Results of Lamp σ = 20 
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Figure 5.18 The Experimental Results of Egg σ =5 
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Figure 5.19 The Experimental Results of Egg σ =10 
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Figure 5.20 The Experimental Results of Egg σ =15 
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Figure 5.21 The Experimental Results of Egg σ =20 

In order to visually compare the results, the experimental results are shown in the above figures 

(Figure 5.6 to Figure 5.21). In these figures, Figure 5.xx(a) are the noisy images; Figure 5.xx(b) 

are the result of the proposed approach; Figure 5.xx(c) are the results of the LPA-ICI method and 

Figure 5.xx(d) are the results of the Wiener filter. From these figures, there are the following 

observations:  

(i) The proposed approach achieves comparable visual effect as the LPA-ICI method. With 

increasing noise levels, both the proposed approach and the LPA-ICI method clearly out-

perform the classical Wiener filter,  

(ii)  No significant difference between the restored image of the proposed approach is 

observed. 

(iii) The proposed method is as robust as the LPA-ICI approach. When the noise level 

increases, it could still achieve good visual results. Generally, when the noise level is high, 
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or when SNR is low, removal of the noise commonly will cause the over-smoothing at the 

edges in the image. However, the presented Bayesian kernel, as well as the LPA-ICI, can 

preserve the edges and remove the noise.  

 
 (a) Optimized Hyper-parameter η = 3.40 

 
(b) Over-smoothed Hyper-parameter η = 3.00 

 
(c) Under-smoothed Hyper-parameter η = 4.95 

 Figure 5.22 Hyper-parameter tuning of the Cameraman with σ =20 
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The tuning of the hyper-parameter is an important step in this approach. A proper value of the 

scale factor η will give a good estimation of the original image. The hyper tuning results of the 

“camera-man” image is used to explain the under-smooth and the over smooth consequences. The 

noisy cameraman image with σ =20 is shown in Figure 5.9. Some results of the hyper tuning are 

shown in Figure 5.22. Figure 5.22(a) shows the optimized η. This η minimizes the cost function 

for the tuning procedure shown in Eq. (5.21), however it is not strictly equal to zero. The plot in 

Figure 5.22(b) shows that η is too small. In this situation, some information of the original image 

will be damaged and lost, i.e. over-smoothing. Figure 5.22(c) shows η is too high. In such cases, 

noise will not be satisfactorily removed, i.e. some discontinuities caused by the noise will still be 

remained in the restored image. 
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(a)                                                                            (b) 

 Figure 5.23 Edge Preservation of Proposed Approach and LPA-ICI 

The significant step in this approach is to identify the “important” pixels, which are the edge 

points or discontinuities in the image. During the smoothing process for noise removal, these 

points will be preserved. These points are shown in Figure 5.23(a). The identified 

edge/discontinuous points using the LPA-ICI approach are shown in Figure 5.23(b). Both 

methods recognized the edges, although the underlying principles are different. 

Computation speed is one important consideration of the algorithm evaluation. The experiments 

and simulations in this work are all carried on the P4 2.0 with RAM 1.0G machine. The 
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computation time of the different approaches with noise 

� 

!  = 10 is shown in Table 5-1. The 

calculation time for those four images with other three noise levels is similar. Form Table 5-1, the 

proposed approach is slower than LPA-ICI and Wiener filter. LPA-ICI is about 60 times slower 

than Wiener Filter and the proposed approach is about 10 time slower that LPA-ICI. One of the 

reasons is that LPA-ICI and Wiener filter use the Fast Fourier Transform (FFT) to calculate the 

convolution, which is a famous efficient fast algorithm. However, the proposed approach is 

purely based on the spatial Local Piecewise assumption. Local information is processed point by 

point. However, computing speed is not the only issue. If image  quality can be further improved 

by spending more time on calculation, it is still desired. 

TABLE 5-1 COMPUTATION TIME OF DIFFERENT APPROACHES 

� 

! =10  CAMARAMAN LENA LAMP EGG 
Bayesian Kernel approach 15min 22sec 14min 03sec 16min 21sec 11min 35sec 

LPA-ICI 1min 17sec 1min 22sec 1min 32sec 56sec 
Wiener Filter 0.89sec 0.78sec 0.87sec 0.87sec 

As discussed in Section 2.4, all criteria which were defined from Eq. (2.35) ~ (2.41) in Chapter 2 

are used to evaluate the experimental results. The data are shown in Table 5-2 to 5-4. 

TABLE 5-2 EXPERIMENTAL RESULTS OF THE BAYESIAN KERNEL APPROACH 
 CAMERAMAN LENA LAMP EGG 

� 

!
 

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

� 

ˆ ! 
 

6.22 11.24 15.91 20.68 6.29 11.01 15.89 20.70 5.07 10.09 14.98 20.17 5.20 10.14 15.23 20.19 

� 

!  7.06 5.59 4.34 3.40 7.36 6.85 4.78 3.82 7.71 7.53 5.36 4.16 5.65 5.79 3.60 3.05 

R 1.84 4.22 6.04 7.78 3.86 4.11 5.98 7.97 4.13 3.83 5.62 7.64 1.77 3.81 5.73 7.65 

SNR 28.52 26.19 24.12 22.60 25.54 24.70 22.47 20.93 33.35 32.93 30.58 28.92 37.79 36.08 33.38 31.42 

ISNR 0.31 4.02 5.50 6.45 1.17 4.01 5.27 6.27 2.13 7.72 8.95 9.76 6.03 10.35 11.11 11.69 

PSNR 34.48 32.15 30.08 28.57 32.97 32.12 29.90 28.36 36.32 35.90 33.55 31.88 40.17 38.47 35.76 33.80 

MSE 23.15 39.59 63.86 90.46 32.83 39.83 66.60 94.88 15.18 16.71 28.70 42.13 6.25 9.26 17.26 27.11 

RMS 4.81 6.29 7.99 9.51 5.73 6.31 8.16 9.74 3.90 4.09 5.36 6.49 2.50 3.04 4.15 5.21 

MAE 3.30 4.17 5.13 5.97 4.35 4.67 5.88 6.90 2.75 2.82 3.63 4.34 1.40 1,69 2.12 2.60 

MAX 45.21 49.05 56.45 91.30 45.17 42.53 49.93 67.82 35.30 33.52 48.71 66.32 26.42 35.31 53.40 68.66 

TABLE 5-3 EXPERIMENTAL RESULTS OF LPA-ICI APPROACH 
 CAMERAMAN LENA LAMP EGG 

� 

!
 

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

SNR 28.52 26.19 24.12 22.60 25.54 24.70 22.47 20.93 33.35 32.93 30.58 28.92 37.79 36.08 33.38 31.42 

ISNR 3.17 4.87 6.01 6.97 2.56 4.59 5.87 6.90 6.29 8.30 9.64 10.53 8.86 10.67 11.62 12.07 

PSNR 37.34 33.01 30.59 29.08 36.71 32.72 30.49 28.98 40.48 36.47 34.24 32.64 43.00 38.80 36.27 34.18 

MSE 12.00 32.51 56.81 80.36 13.86 34.79 58.14 82.16 5.83 14.66 24.44 35.35 3.26 8.57 15.32 24.84 

RMS 3.46 5.70 7.54 8.96 3.72 5.90 7.63 9.06 2.41 3.83 4.94 5.95 1.81 2.93 3.91 3.03 

MAE 2.49 3.80 4.93 5.82 2.83 4.31 5.43 6.37 1.76 2.68 3.42 4.08 1.17 1.81 2.37 3.03 

MAX 24.53 45.09 71.78 103.28 21.97 40.58 56.36 89.41 21.99 38.81 48.80 75.81 17.88 41.20 50.58 91.36 
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TABLE 5-4 EXPERIMENTAL RESULTS OF WIENER FILTER APPROACH 
 CAMERAMAN LENA LAMP EGG 

� 

!
 

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

SNR 28.52 26.19 24.12 22.60 25.54 24.70 22.47 20.93 33.35 32.93 30.58 28.92 37.79 36.08 33.38 31.42 

ISNR 2.27 2.48 4.51 5.52 0.36 3.76 5.33 6.16 4.93 7.04 7.70 7.71 5.05 7.14 7.75 7.85 

PSNR 31.90 30.62 29.09 27.63 33.79 31.88 29.95 28.25 39.11 35.21 32.31 29.84 39.17 35.26 32.41 29.96 

MSE 41.96 56.32 80.15 112.10 27.19 42.22 65.77 97.30 7.97 19.59 38.24 67.51 7.88 19.35 37.34 65.64 

RMS 6.48 7.50 8.95 10.59 5.21 6.50 8.11 9.86 2.82 4.42 6.18 8.22 2.81 4.40 6.11 8.10 

MAE 4.15 5.21 6.47 7.78 3.69 4.77 6.04 7.42 2.01 3.30 4.68 6.21 1.87 3.20 4.53 6.05 

MAX 47.61 51.50 63.94 85.20 34.43 45.38 51.33 73.72 34.82 36.97 48.04 61.01 32.13 34.87 49.19 63.79 

From the experimental results in Table 5-2 to 5-4 and the error analysis: 

1. The estimated noise level is accurate, however is still biased. Theoretically, the cost function 

of the hyper tuning in the proposed approach should be zero, however, because of the bias 

and the limitation of the iteration process during optimization, the cost function is not zero. 

Therefore, optimized results are only an approximation.  

2. The RMS and the MSE of LPA-ICI is slightly smaller than the proposed approach. One of 

the RMS error of three different approaches under different noise level is shown in Figure 

5.24. The MAE of LPA-ICI is very close to the proposed approach. 

3. From the data, the proposed approach and the LPA-ICI method are obviously better than the 

traditional Wiener filter. The ISNR and the PSNR of the LPA-ICI method is slightly high 

than the proposed approach, as shown in Figure 5.25. The error criteria of both methods are 

also close and all increase with the increase of the noise variance.  

4. Since this work is focused in the edge preservation, it is important to compare the proposed 

method with other approaches at the edge. When the noise level is high, e.g. variance equals 

to 15 and 20, the MAX errors, which is the infinite norm, of all four tested images of the 

proposed approach are all significantly smaller than the LPA-ICI approach as shown in 

Figure 5.26 and Table 5-2. We know that the maximum of the fitting error normally occurs 

at the edge points. This indicates the proposed approach performance better than LPA-ICI 

approach at the edge point, e.g. the edge is better preserved by the proposed approach. The 

cost is  more computing time is needed than LPA-ICI.  
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Figure 5.24 RMS Error of Bayesian Kernel, LPA-ICI and Wiener Filter (Image of “Lamp”) 
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Figure 5.25 ISNR of Bayesian Kernel, LPA-ICI and Wiener Filter (Image of “Egg”) 
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Figure 5.26 MAX Error of Bayesian Kernel, LPA-ICI and Wiener Filter (Image of “Lena”) 
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Wiener filter’s MAX error is smaller than the proposed approach, however, due to other errors 

are much bigger that both LPA-ICI and the proposed approach, its restored images are 

competitive by visual investigation, as shown in Figure 5.6 ~5.21. The proposed approach 

achieved good effects and better preserved edges among all those three methods.  

5.5. Summary 

From the experimental results, the proposed Bayesian kernel approach with the Local Piecewise 

assumption can successfully remove the undesired noise and preserve the edges very well. The 

speed of the calculation will be determined by the window size (for the ROI) and the image size. 

Since the LPA-ICI method uses the Fast Fourier transform (FFT) to perform the convolution, 

algorithm presented in this work is slower than the LPA-ICI method. For example, the time of the 

LPA-ICI method needs more than 60 seconds to process a 256×256 image (depends on the 

number of the and the size of the convolution kernel), while the proposed method will need less 

than  20 min to process the same image including the hyper tuning procedure. The LPA-ICI 

generally uses more than one scales, however the proposed approach only uses one scale.  

The results of the proposed method are comparable with the LPA-ICI method. From the SNR 

point of view, LPA-ICI is slightly better than the presented approach due to the bias of global 

noise estimation. There is no significant visual difference between them. MAX errors of the 

proposed approach is significantly smaller than the LPA-ICI when SNR is low. Since the edge 

encoded important information of an image, it is meaningful to compare the error at the edges. 

One obvious advantage of the proposed approach is that it performs better than LPA-ICI in the 

meaning of MAX error, which means the error at the edge points is smaller or the edges are better 

preserved than the LPA-ICI. 

There is one important reason that affects the results of the proposed method. The estimations of 

the noise variance globally and locally are both biased. This will cause the cost function in Eq. 
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(5.21) to be only an approximation of the minimum. From Table 5-2, even the optimized value of 

the cost function finally is small, but it is not equal to zero. Better performance of the proposed 

method can be expected by faster and better tuning approach for the hyperparameter. 

The approach in this work is the first Bayesian kernel approach for edge preserved image 

restoration method. So far there is no such attempt amongst the reviewed literature on this topic. 

The significance of the proposed inference and formulation is that the method itself guarantees 

the stability of the estimation since the given cost function only has one global minimum. The ill-

condition of the image restoration is successfully solved. The proposed approach achieves 

comparable image quality both in visual inspections and quantitative criteria compared with the 

LPA-ICI, which is the best approach reported in the image restoration literature so far.  

It is clear that the proposed method performs almost equally well as the IPA-ICI, however it is 

better for edge preservation according to MAX error. It does not require the convolution and de-

convolution process in image restoration, while the LPA-ICI depends heavily on convolution 

process and the use of FFT to speed up the computation. The approach mentioned here is first 

such attempt, and with further refinements and computation algorithm, the presented approach 

here would possibly surpass the LPA-ICI, both in computational efficiency and accuracy. 
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6 .  C h a p t e r  6  
 
S t a t i s t i c a l  A p p r o a c h  f o r  M o t i o n  B l u r  
I d e n t i f i c a t i o n  

The next step after noise removal would be the identification of blur, if any, as mentioned in 

Chapter 1 (Figure 1.1). This step is to determine of the nature of the blurring process. In this 

Chapter, a statistical approach to determine the characteristics of the blur – Point Spread Function 

(PSF) will be developed. From the literature, problems concerning blurring of image due to 

motion in a single direction are more difficult to handle than those due to bi-directional motions 

such as out-of-focus blurring since they are more ill-conditioned. We therefore, shall present our 

approach to handle cases involving blurring due to single directional motion.  

6.1. Introduction 

After the noise is successfully removed and the contents/edges of the image are preserved, the 

information on the blurring should be identified which is needed for the deconvolution task, e.g. 

the PSF and the noise. In the procedure of deblurring, both à priori knowledge of the noise and 

the blurring process are needed. As mentioned in Chapter 2, some existing methods could give a 

good estimation of the noise variance, effort in this Chapter will be focused in the identification 

of the PSF. 

The blurred image is actually the convolution of the original image and the PSF. It is difficult to 

separate the two convolved signals without any à priori information about either one of them. 

Therefore, certain assumptions regarding the original signal must be made in a blur identification 

algorithm, and they usually also include, the PSF, and/or the noise characteristics. Some 

algorithms assume a particular model for the PSF while others assume the characteristics of the 
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signals themselves. Furthermore, the algorithms may incorporate partial information about the 

signal and/or the PSF. The more à priori information that is incorporated into the algorithm, the 

better will be the fidelity of the estimate of the original signal to the actual one [22]. A list of 

assumptions, models, and partial knowledge that are frequently used to aid in identifying and 

separating two unknown convolved signals, the image and the PSF [22]: 

 Image or/and PSF is/are non-negative. 

 Spatial extent of image is much greater than that of the PSF. 

 PSF conserves mean value of the original signal. 

 Form of blur is known (e.g. motion blur). 

 Power spectrum estimate of image is known. 

 The image and/or PSF have/has finite extent. 

The assumptions that are made on the data as well as the à priori information required by the 

algorithm will determine the applicability of a particular technique to a given set of data. Clearly, 

if the required partial information for the data is not available, then the technique that requires it 

will not be useful. Similarly, if the assumptions made about the data do not conform well to the 

physical situation, the technique is less likely to be successful in the deconvolution of the two 

signals. Thus, it is desirable to have techniques, which require fewer assumptions about the data 

and little partial information about the original signal and/or the PSF [22]. Such techniques will 

find broader applicability to real-life blur identification problems. 

6.2. Analysis of  the Blur Effect in the Derivative Image 

6.2.1. The Derivative of  Blurred Image 

In this section, the Derivative Image of the blur image will be studied and analyzed. Support is 

the region of a function in which it is defined. In fact, the support of the PSF is usually finite, i.e., 
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the PSF of the blurring process usually only has a limited support. The support of PSF d(x, y) 

was defined and denoted as 
d

! in Chapter 2, which is 

� 

(x,y)! 
d

! =

� 

([!b,b],[!b,b]) , as shown in 

Figure 6.1. 

 

Figure 6.1 The Definition of PSF and the Blurred Image 

Suppose that there is a point 

� 

f (x,y)  in the original image plane x-y, and then the corresponding 

point of the blurred image is 

� 

g(x,y) , as shown in Figure 6.1. This point is given by: 

( , ) ( , ) ( , ) ( , ) {( , ) }
d

ng x y f d x y d d e x y x y! " ! " ! "
#

= $ $ + %#&&  

( , ) ( , ) ( , )
x b y b

n
x b y b

f d x y d d e x y! " ! " ! "
+ +

# #
= # # +$ $   (6.1) 

en is the additive noise term. Suppose that the blur is caused by the motion in the y-direction only. 

The formulation is similar for the motion blur alone x-direction. The 2-D PSF could be simplified 

as a 1-D PSF in this particular case: 

� 

d(x,y) =
d(y) x = 0 and y !["b,b]

0 x # 0

$ 

% 

& 
 (6.2) 

Furthermore some necessary constraints of the PSF are needed: 
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� 

d(!b) = d(b)   (6.3) 

� 

d (y)dy! = 1  (6.4) 

Eq. (6.3) indicates that the PSF is symmetrical at the boundary of its support, and PSF satisfying 

Eq. (6.4) fulfils the energy conservation condition.  

After the simplification, the previous Eq. (6.1) can be expressed as: 

( , ) ( , ) ( ) ( , )
y b

n
y b

g x y f x d y d e x y! ! "
+

#
= # +$  (6.5) 

For simplicity in representation, g(x,y) is denoted as g(y), f(x,β) as f(β), and en(x,y) as en(y). The 

derivative of g(y) with respect to y is given as: 

( )
( ( ) ( ) ( ))

y b

n
y b

g y
f d y d e y

y y
! ! !

+

"

# #
= " +

# # $  

( )
( ) '( ) ( ) ( ) ( ) ( )

y b
n

y b

e y
f d y d f y b d b f y b d b

y
! ! !

+

"

#
= " + + " " " +

#$  (6.6) 

Here 

� 

!g(y) !y  is the derivative of the blurred image. The derivative of the blurred image will 

provide the information on the PSF, such as the extent and parameter of the PSF; however, the 

derivative of the image should be considered separately within two different regions: edge region 

and smooth region. 

6.2.2. The Edge and Smooth Regions in the Derivative Image 

Basically, there are two kinds of possible regions in an image. First is the edge-region, in which 

the gray level increases or decreases abruptly over a small distance. Second is the smooth-region, 

in which the gray level changes very slowly. The definition of the two regions is given following. 

Let us assume that there is a sharp edge in the original image f(y) located at y’. In addition, f(y), y 
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≠ y’ changes very slowly such that the gray levels values could be regarded as a constant in a 

small region 

� 

[y'!a,y'+a]  in the neighborhood of y’, where a>0. The edge region could be 

modeled by [112]:  

� 

E[ f (y)]= A; E[ f (y) ! A]2 = " n
2
; (y'# y # y'+a)

E[ f (y)]= B; E[ f (y) ! B]2 = " n
2
; (y'!a # y < y' )

A > B;a > b;

$ 

% 
& 

' 
& 

 (6.7) 

where ][•E  is the expectation; f(y) is the original image in Eq. (6.1); A and B are two different 

gray levels of the image pixels. A>B means the edge is ascending. 

� 

[y'!a,y'+a]  is the edge-

region support (Note that [-b,b]is the support of the PSF in Eq. (6.2)). 

� 

!
n

2 is the estimated 

variance of the noise.  Only the ascending sharp edge will be analyzed, which is modeled by Eq. 

(6.7). The analysis of a descending sharp edge is similar. In this edge region, two things need to 

be noted. Firstly, when a > b , the image f(y) could be treated as a constant in the support of the 

PSF. Secondly, the edge of the practical image may not be so sharp that it can jump to a higher 

gray level in an infinitesimal small region. The model presented in this dissertation is only an 

ideal model. The differences between this ideal model and the practical situation will be 

discussed in the section on experimental results. 

After setting the model of an edge-region, a smooth-region is defined. In a small image region 

� 

[y ! a,y + a], if 

� 

f (y)  satisfies: 

� 

E[ f (y)]= C; E[ f (y) !C] = " n
2
; (y'!a # y # y'+a)

a > b;

$ 

% 

& 
 (6.8) 

Then this region is defined as a smooth-region with 

� 

[y ! a,y + a] as its support. Again, in this 

case ba > , Eq. (6.8) implies that in the small region 

� 

y ! a < y < y + a , the gray level values of 

the pixels could be treated as a constant statistically. The changes of the gray level in the region 
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are only caused by the noise. Here the supports of the edge-region and the smooth-region are 

much smaller than the image size. The overlap area of the two regions is negligible. 

Next, let’s analyze the effect of blurring process on the two different regions. First, we look at the 

effect of the blurring process on the edge-region. Substitute Eq. (6.7) into Eq. (2.3) and then 

determine the expectation of Eq. (6.7) in the region of [-a,a][112]: 

0 [ ' , ' )
( )

( ) ( ') [ ' , ' ]

0 ( ' , ]

y y a y b
g y

E A B d y y y y b y b
y

y y b y a

! " "#
$ %& '

= " " ! " +() *&+ , ' ! + +-

 (6.9) 

Here, it is obvious that the expectation of the derivative of the image along the direction of 

motion could reflect the characteristics of the PSF. The support of the PSF could be determined 

by the extension of the non-zero region of 

� 

E(!g(y) !y) . Furthermore, the PSF is only multiplied 

by a constant (A-B). Considering the second constraint of PSF, stated in Eq. (6.4), the influence of 

the constant could be eliminated.  

Secondly, the behavior of the smooth-region in blurring process is different. Substitute Eq. (6.8) 

into Eq. (2.3) and considering together with Eq. (6.7): 

� 

E(
!g(y)

!y
) = 0   (6.10) 

Furthermore, it is easy to prove that if the PSF does not satisfy Eq. (6.3), the expectation of the 

derivative in the smooth-region will only be shifted from zero to a new constant, which is dictated 

by the boundary value of d(y).  

From the above analysis, the conclusion is that the blurring process will not change the derivative 

of the image along the direction, of which the blurring occurs in a smooth-region. Near a region 

of a sharp edge, the derivative will reflect the characteristics of the blurring process, i.e., the 

extent and the parameters of PSF. 
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6.3. Blur Identification in Spatial Domain 

6.3.1. Extraction of  the PSF Extent 

After having obtained the expectation of the derivative of the blurred image, a shadow image 

� 

L(x,y)  is defined[112]: 

� 

L(x,y) =

1
!g(y)

!y
> T

0 "T <
!g(y)

!y
< T

"1
!g(y)

!y
< "T

# 

$ 

% 

% 
% 

& 

% 

% 

% 

"' < x,y < +'  (6.11) 

where T is a positive threshold. For simplicity and based on the assumption that the blurring is 

due to the motion in the y-direction, 

� 

L(x, y)  can be simplified as 

� 

L(y) . In fact, the shadow image 

is a continuous black and white image. The magnitude of the edges as a random variable, which 

is assumed to be a zero-mean homogeneous Gaussian distributed random variable. Furthermore, 

the à priori probability of an ascending sharp edge to be approximately equal to the à priori 

probability of descending sharp edge.  

The threshold is applied to extract the useful information and reduce the influence of the noise. 

From Eq. (6.11), more information can be extracted from the derivative image with lower 

threshold. However, to reduce the noise effect, T should not be equal to zero. Selection of a good 

value for the threshold will be discussed in the next section. 

The identification parameter 
  

� 

l y  therefore can be defined. If a region of the shadow image 

� 

L(x,y)  satisfies: 

� 

L(x,[y1 y2]) ! 0

L(x, lim
"y#0

(y1 $ "y)) = 0

L(x, lim
"y#0

(y2 + "y)) = 0

% 

& 

' 
' 

( 

' 

' 

 (6.12) 
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The parameter 
  

� 

l y  is defined by: 

1 2 2 1{ ( , ( ))}
y
sign L x y y y y y= ! • "l  (6.13) 

The function )(•sign  is to obtain the sign of the terms within the enclosing curly brackets. All the 

regions which satisfy Eq. (6.12), is defined as the sub-space with the parameter 
  

� 

l y : 

)|,(]}[,{ 21 yyxSyyxL l!  (6.14) 

The sub-space is part of the shadow image. The shadow image is divided according to the 

different values of 
  

� 

l y .  As analyzed in the last section, the derivative of the blurred image along 

the direction of motion will characterize the PSF.  According to Eq. (6.9) and (6.10), the area of 

sub-spaces with the parameter 
  

� 

±l y  which is equal to the extent of the PSF is expected to 

dominate other sub-spaces. Here the sign of the parameter can be disregarded since it only 

indicates the ascent or descent edges. The area of the subspace with the parameter 
  

� 

l y  is 

calculated. It is defined by an integral function shown in Eq. (6.15) as follow [112]: 

( ) ( , | ) ( , )y y yS x y dxdy! ! !+" +"

#" #"= $ #" +"% %h  (6.15) 

The area of the sub-space )(
y

lh  is assumed a zero-mean Gaussian random variable. Then the 

probability density function (PDF) of this random variable )(
y

lh  is given by [22]: 

( )
( )

( )

y

y

y y

p
d

+!

"!

=

#

h l
l

h l l
 (6.16) 

Furthermore, the PDF of )(
y

lh  is treated as a zero-mean Gaussian distribution. The integral 

function implies the absolute area of the sub-space with respect to the parameter 
  

� 

l y . 
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It is well known that most of the images are degraded by noise. If all the edges in the image are 

sharp, in other word, they satisfy Eq. (6.7), the probability density function in Eq. (6.16) is 

assumed to be a zero-mean Gaussian distribution; otherwise this assumption may not be valid. If 

there is an image without blur, and substituting 
  

� 

l y  into Eq. (6.16), 
  

� 

p( l y )  is expected to be 

monotonically decreasing. As discussed above, the blurring process will increase the probability 

at 
  

� 

l y , which is equal to the extent of the PSF. In other words, the blurring process will damage 

the monotonically decreasing characteristics of 
  

� 

p( l y ) . The blurring extent could be identified by 

locating the exclusive peak of 
  

� 

p( l y ) , which is located at   

� 

l = 2b, theoretically. 

Some images do not strictly satisfy Eq. (6.7) becasue:  

(a) Some edges in the images may not be so sharp that the gray level of the pixels at the 

edge would jump to a higher level in an infinitesimal small region.  

(b) The smooth region near the edges may be smaller than the support of the PSF.  

The performance of the algorithms of these two situations will be discussed in the section on 

experimental results. 

6.3.2. Parameter Identification 

As shown by the analysis in the previous section, the blurring extent can be identified  by locating 

the exclusive peak in 
  

� 

p( l y ) . In some applications, prior knowledge about the PSF is not 

available. In this situation, not only we want to know the extent of the PSF, but we are also 

interested in what is the type of the PSF. During the identification process, the threshold of the 

shadow image is an important parameter. When the blur is caused by linear motion, a small 

difference in the value of the thresholds will not influence the identification result. But, this 

would not be the case when the PSF has a shape similar to a parabola. If the value of the 

threshold is too small, too much noise would be included in the shadow image, which would 



Weimiao YU Bayesian Approaches for Image Restoration 

ME Department of National University of Singapore 
122 

make the identification difficult. On the other hand, the value of threshold should not be too high, 

as it will truncate the extent of the PSF.  

In practice, the threshold is selected dynamically. To determine the threshold, a meaningful range 

within which the desired threshold may be found is given. The range is divided into equally 

spaced values. For each value, the distribution function ( )
y

p !  given in Eq. (6.16) is calculated. 

The peak value is then identified. When ( )
y

p !  is determined for all values of the threshold 

within the said range, the minimum values among these highest peaks are identified. The value of 

threshold at which the peak corresponds to is chosen to be the final threshold for the identification 

of the extent of the PSF.  The effect of the threshold will be analyzed in the section 6.4.2 of the 

experimental results.  

After identified the blur extent of the PSF by locating the exclusive peak in ( )
y

p !  at ˆ2y d! = , 

the sub-space with parameter 2y d! =
)

  is denoted as ( , | 2 )S x y d
)

. In fact, in all of the sub-spaces 

with parameter 
y

! , ( , | 2 )S x y d
)

 contains the most information on the PSF. The shape of the PSF 

is given by [112]: 

( , ) ( , |2 )

( , ) ( , |2 )

( , )

'( )
( , )

x y S x y d

x y S x y d

g x y
dx dy

y
d y

L x y dx

!

!

"
##

"
=

#

)

)

)

 (6.17) 

After having obtained the initial estimation 

� 

ˆ d ' (y) , it is normalized to obtain the final estimation 

of the PSF   

� 

) 
d . The normalization is only to make the PSF satisfy Eq. (6.4). As no assumption is 

made about the form of the PSF, thus this method could be applied to the estimation of the PSF of 

any shape. 

In practice, once a blurred image is obtained, the blur direction is known which is commonly 

along one of the coordinate axes.  
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1. Under this assumption, calculate the derivative of the blurred image according to Eq. 

(6.6).  

2. Based on the earlier discussion on thresholding presented earlier, determine the shadow 

image according to Eq. (6.11).  

3. ( )
y

p !  is then calculated to identify the extent of the PSF.  

4. Finally, apply Eq. (6.17) to identify the parameter of the PSF. 

6.4. Experimental Results 

6.4.1. Experimental Images and PSFs 

 
          (a) Lena                       (b). Tools                  (c). Cameraman             (d)Non-Smoking 

 
(e) EggShell               (f). Triangle                     (g). Circle                 (h)Rectangle 

 Figure 6.2 Images in the Experiments 
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In order to test the performance of the algorithm proposed in this chapter, it is applied to some 

blurred images in this section. The images for the experimental section are shown in Figure 6.2. 

Some of the test images satisfy the assumption that the edges are sharp, which is indicated by the 

edge model of Eq. (6.7). It requires the edges to be ascending or descending within one or two 

pixel interval.  The 
  

� 

p( l y ) ’s of these images are monotonically decreasing, such as “Lena”, 

“Tools” and “Camera-man” as shown in Figure 6.3. 

 
Figure 6.3 Monotonically Decreasing 

  

� 

pl y  of the Test Images (SNR>60) 

 
 Figure 6.4 Non-monotonically Decreasing 

  

� 

pl y  of the Testing Images (SNR>60) 
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Some test images do not strictly satisfy Eq. (6.7). The non-monotonic 
  

� 

p( l y ) ’s of the five images 

are shown in Figure 6.4. They are Non-Smoking sign, Eggshell, Triangle Circle and Rectangle. It 

is obvious that there are peaks within peaks over 2- 4 pixels width along the 
y

l  axis. This is 

because the width of the edge is not small, i.e., the edge is not sharp enough. 

As this method is based on statistical principles, 
  

� 

p( l y )  should be monotonically decreasing at the 

lower SNR, Those images are Lena, Tools and Cameraman, which are show in Figure 6.5. 

 
 Figure 6.5 Monotonically Decreasing 

  

� 

pl y  of the Testing Images (SNR≥25) 

6.4.2. Identification of  the PSF Extent 

In carrying out the experiment, the original test images are blurred by four pre-selected PSFs and 

the algorithm of PSF extent identification is applied as described in this chapter in Section 6.3. 

The four PSFs are shown in Figure 6.6, which are common in the industrial applications. They 

are the Uniform Motion Blur PSF, High Frequency Vibration PSF, Continuous Low Frequency 

Vibration PSF and Discontinuous Low Frequency Vibration PSF.  



Weimiao YU Bayesian Approaches for Image Restoration 

ME Department of National University of Singapore 
126 

 
(a) Uniform Motion Blur PSF                   (b). High Frequency Vibration PSF 

 
(c) Continuous Low Frequency Vibration PSF      (d) Continuous Low Frequency Vibration PSF 

Figure 6.6 PSFs in the Experiments. 

In order to analyze the effect of the threshold T  in the identification process, a 3-D plot of 

  

� 

p( l y ) , threshold T and 
y

l , commonly known as waterfalls, is shown in Figure 6.7. This 

waterfall is the result of the identification of the test image, Lena shown in Figure 6.2. The SNR 

value is 50, and the PSF used to blur the image is the discontinuous low frequency PSF (Figure 

6.6 (d)), and the extent of this PSF is 15 pixels. Different values of thresholdsT  are chosen, from 

0 to 40%. From Figure 6.7, it is obvious that when the threshold T  increases, the exclusive local 

peaks shift to the left. This is because the high thresholds will truncate the extent of the PSF. 

When the threshold T  is higher than 25% this method is not valid for this image any more.  

The waterfalls of some of the blurred images are analyzed and most of the optimized thresholds 

T  of the shadow image of those images fall in the region from 10% to 25% of the maximum 

absolute value of derivative images, in Eq. (6.6). In fact, every blur identification could produce a 

waterfall. But the calculation of the waterfall is computational intensive. Thus, instead of 
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calculating the waterfall of the blurred image across the range of threshold from 0% to 40%, we 

look for the threshold T  in a narrower range from 10% to 25% as described in the last section. 

 

 Figure 6.7 Waterfall of Identification Result of PSF Extent (SNR=50). 

 
 Figure 6.8 PSF Extent Identification Results of Blurred Image from  

  

� 

pl y  (SNR=40, T for 

Different Images is Indicated in the Corresponding Tables. PSF is the Uniform Linear 

Motion Blur. 
  

� 

pl y s of the Original Images are Monotonically Decreasing, as Shown in 

Figure 6.3.) 
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 Figure 6.9 PSF Extent Identification Results of Blurred Image from 

  

� 

pl y  (SNR=40, T for 

Different Images is Indicated in the Corresponding Tables. PSF is the Uniform Linear 
Motion Blur. 

  

� 

pl y s of the Original Images are Non-monotonically Decreasing, as 

shown in Figure 6.4.) 

Some identification results of blur extents (SNR = 40) are shown in Figure 6.8 and Figure 6.9. 

From Figure 6.8, the blurring process will change the shape of  
  

� 

p( l y )  if compared with Figure 

6.3.  As analyzed in the last section, locating the exclusive peaks in 
  

� 

p( l y )  could identify the 

blurring extent, which is 
  

� 

l y =15 . From Figure 6.9, there are still some very small peaks at which 

the value of 
  

� 

l y  is low, but they can be ignored when compared with the high peaks, which 

indicate the extent of the PSF.  

The effects of noise on the identification of the extent of blur should be considered. The most 

important aspect of this study is to determine at what value of SNR this method cannot work 

anymore. The results are listed in Table 6-1 to 6-4. The value in bracket indicates the dynamically 

selected threshold value.  

From Tables 6-1 to 6-4, the proposed method could identify the extent of the PSF without any 

error for the given eight images when SNR

� 

!30. When the SNR is 20db, the error is about 2-3 

pixels. The proposed approach has good tolerance to noise and accurate in the identification of 

PSFs’ extent when the noise level is high.  
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 TABLE 6-1 BLUR EXTENT IDENTIFICATION OF BLURRED IMAGES IN SPATIAL 
DOMAIN (UNIFORM MOTION BLURRING - FIGURE 5.6(A)) 

SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 15(0.22) 15(0.12) 15(0.12) 15(0.12) 15(0.13) 15(0.10) 15(0.09) 15(0.10) 

50 db 15(0.23) 15(0.11) 15(0.14) 15(0.11) 15(0.14) 15(0.11) 15(0.11) 15(0.09) 

40 db 15(0.23) 15(0.13) 15(0.22) 15(0.14) 15(0.13) 15(0.14) 15(0.14) 15(0.12) 

30 db 15(0.34) - - 15(0.20) 14(0.20) 13(0.18) 13(0.18) 14(0.22) 

20 db 15(0.20) - - - - - - - 

TABLE 6-2 BLUR EXTENT IDENTIFICATION OF BLURRED IMAGES IN SPATIAL 
DOMAIN (HIGH FREQUENCY BLURRING - FIGURE 5.6(B)) 

SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 15(0.20) 15(0.18) 15(0.20) 15(0.15) 15(0.12) 15(0.12) 15(0.16) 15(0.18) 

50 db 15(0.25) 15(0.18) 15(0.20) 15(0.14) 15(0.15) 15(0.12) 15(0.15) 15(0.17) 

40 db 15(0.26) 15(0.19) 15(0.22) 15(0.16) 15(0.16) 15(0.13) 15(0.18) 15(0.19) 

30 db 15(0.28) 15(0.20) - - - - 14(0.22) - 

20 db - - - - - - - - 

TABLE 6-3 BLUR EXTENT IDENTIFICATION OF BLURRED IMAGES IN SPATIAL 

DOMAIN (CONTINUOUS LOW FREQUENCY BLURRING - FIGURE 5.6(C)) 
SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 15(0.15) 15(0.18) 15(0.20) 15(0.12) 15(0.16) 15(0.16) 15(0.16) 15(0.14) 

50 db 15(0.16) 15(0.20) 15(0.22) 15(0.10) 15(0.17) 15(0.15) 15(0.15) 15(0.12) 

40 db 15(0.18) 15(0.18) 15(0.25) 15(0.14) 15(0.20) 15(0.17) 15(0.17) 15(0.16) 

30 db 15(0.20) - 13(0.22) 15(0.20) 11(0.22) - 12(0.20) 16(0.17) 

20 db - - - - - - - - 

TABLE 6-4 BLUR EXTENT IDENTIFICATION OF BLURRED IMAGES IN SPATIAL 
DOMAIN (DISCONTINUOUS LOW FREQUENCY BLURRING - FIGURE 5.6(D)) 
SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 15(0.10) - 15(0.08) 15(0.08) 15(0.14) 15(0.14) 15(0.15) 15(0.14) 

50 db 15(0.11) - 15(0.09) 15(0.08) 15(0.12) 15(0.15) 15(0.15) 15(0.15) 

40 db 9(0.15) - 15(0.25) 15(0.14) 15(0.20) 15(0.17) 15(0.17) 15(0.16) 

30 db 11(0.16) - 16(0.10) - 17(0.17) 13(0.20) 15(0.18) 15(0.20) 

20 db - - - - - - - - 

-: means cannot find any exclusive peaks. 

6.4.3. Parameter Extraction of  the Experimental Images 

As discussed in the preceding sections, after the extent of the PFS is identified, the parameters of 

the PSF would be extracted. Here a criterion P is defined to describe the accuracy of the 
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parameter extraction: 

  

� 

P =

[
) 
d (i) ! d(i)]

2

1

N

"

E
  (6.18 ) 

where d(i) is the parameter of the known PSF; 

� 

ˆ d (i)  is the parameter of estimated PSF; and E is 

the extent the PSF (in pixel). In effect, P is actually a similarity measurement of d  and 

� 

ˆ d .  

The mean of the criterion P  is the Root Mean Square Error (RMSE). If the extracted parameters 

are equal to the ideal parameters, P should be zero. P will increase with the decrease of accuracy. 

The results of parameter extraction with SNR equal to 40 are presented in Figure 6.9(a)-(d). From 

these figures, the proposed approach of PSF parameter identification is accurate for those four 

common PSFs used. Note that all the identification results have a boundary effect. There are two 

possible reasons: 

1. Information may not be sufficient to provide a good estimation of those points since they are 

located near the ends. 

2. In Section 6.2.2, it was assumed that the supports of the edge-region and the smooth-region 

are much smaller than the image size. Furthermore, it is also assumed that a>b in Eq. (6.8).  If 

this assumption cannot be satisfied everywhere, it will also introduce some error at the 

boundary.  

The proposed approach is verified at different values of SNR. The results are shown in Table 6-6 

to 6-8. The similarity measurement of the true PSF and the estimated PSF is small when the SNR 

is high. Of course, when the SNR decreases, P will also increase, which means the difference 

between the true PSF and the estimated PSF becomes bigger. But note that the increase of P is 

much slower, for example, for Lena in Table 6-5, the SNR decreases from 60 db to 40 db, but P 

remains at the same value.  
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(d) Discontinuous Low Frequency Vibration PSF 

 Figure 6.10 Estimation of the PSF Coefficients in Spatial Domain 
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From these tables, when SNR = 40db, the results of extraction are accurate. When SNR < 30db, 

the blurred image would contain too much noise that the method is not able to extract useful 

information about the blurring process.  

TABLE 6-5 PARAMETER EXTRACTION FROM BLURRED IMAGES IN SPATIAL 
DOMAIN (UNIFORM MOTION BLURRING - FIGURE 5.6(A)) 

SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 0.0094 0.0087 0.0091 0.0039 0.0087 0.0036 0.0075 0.0078 
50 db 0.0094 0.0094 0.0080 0.0042 0.0087 0.0038 0.0074 0.0078 
40 db 0.0094 0.0090 0.0075 0.0039 0.0075 0.0049 0.0068 0.0077 
30 db 0.0124 - - 0.0230 * * * * 
20 db 0.0099 - - - - - - - 

TABLE 6-6 PARAMETER EXTRACTION FROM BLURRED IMAGES IN SPATIAL 
DOMAIN (HIGH FREQUENCY BLURRING - FIGURE 5.6(B)) 

SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 0.0150 0.0228 0.0181 0.0084 0.0165 0.0075 0.0136 0.0149 
50 db 0.0257 0.0229 0.0193 0.0084 0.0166 0.0076 0.0138 0.0085 
40 db 0.0256 0.0224 0.0110 0.0083 0.0160 0.0104 0.0118 0.0130 
30 db 0.0272 0.0495 - - - - * - 
20 db - - - - - - - - 

TABLE 6-7 PARAMETER EXTRACTION FROM BLURRED IMAGES IN SPATIAL 
DOMAIN (CONTINUOUS LOW FREQUENCY BLURRING - FIGURE 5.6(C)) 

SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 0.0235 0.0206 0.0159 0.0106 0.0233 0.0098 0.0160 0.0172 
50 db 0.0232 0.0248 0.0185 0.0103 0.0229 0.0098 0.0162 0.0172 
40 db 0.0223 0.0219 0.0139 0.0110 0.0208 0.0102 0.0145 0.0171 
30 db 0.0299 - * 0.0233 * - * * 
20 db - - - - - - - - 

TABLE 6-8 PARAMETER EXTRACTION FROM BLURRED IMAGES IN SPATIAL 
DOMAIN (DISCONTINUOUS LOW FREQUENCY BLURRING - FIGURE 5.6(D)) 
SNR Lena Tools Cameraman Nonsmoking Egg Triangle Circle Rectangle 

60 db 0.0297 - 0.0309 0.2448 0.0310 0.0130 0.0203 0.0213 

50 db 0.0286 - 0.0324 0.1972 0.0318 0.0131 0.0203 0.0213 

40 db * - 0.0286 0.1599 0.0305 0.0189 0.0218 0.0236 

30 db * - * - * * 0.0935 0.1133 

20 db - - - - - - - - 

-: means can not find any exclusive peaks to identify the extent of the PSF 
*: means can find the exclusive peaks to identify the extent of the PSF, but the result is not 

accurate. 
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6.4. Summary 

In this Chapter, a spatial statistical blur identification approach is proposed to obtain the 

information on the PSF, such as the extent and the parameters of the PSF. This approach is also a 

statistical treatment for blur identification. Based on the edge region model of the image and the 

analysis in the previous sections, an algorithm to identify the PSF of a blurred image is 

developed. The results of the experiments with different images at different SNRs and under four 

common PSFs demonstrate that this proposed method is efficient and not sensitive to noise to a 

great extent. There are several issues that are worthwhile to discuss. 

A major issue in the method proposed in this work is that the threshold of the shadow image may 

be of different values under different conditions (such as when the image is blurred by different 

PSFs). If the PSF is a linear motion blur, the values will not affect the identification of the extent 

of the blur. But if the shape of the PSF is similar to a parabola, the value of the threshold should 

be as low as possible. This is because too high a threshold value would truncate the extent. 

Paradoxically, when the threshold is very low, the shadow image would contain too much noise. 

The local exclusive peaks will be inundated by the noise. From the experiments, it is  found that 

the optimized value of the threshold may be different for different images. The choice of the 

value of threshold is an important step in the method. In the experiments, the threshold value is 

determined dynamically. However, this may not be the best method to find the optimum 

threshold.  

Secondly, the errors incurred in the extracted parameters and the boundary effects are due to two 

reasons.  

 The assumption 

� 

a > b is not always true for some edge-regions in practice. This implies that 

the change of the gray level within the edge regions, other than the gray level changes of the 
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edges, will contaminate the extracted parameters. However, results of the experiments show 

that this assumption is acceptable.  

 The effect of noise will influence the parameter extraction. The presented algorithm does not 

seem to be sensitive to noise, even when SNR is higher than 30 db, the method of parameter 

extraction is effective. 
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7 .  C h a p t e r  7  
 
C o m p a c t  D i s c r e t e  P o l a r  T r a n s f o r m  f o r  
R o t a t i o n a l  B l u r r e d  I m a g e s  

7.1. Introduction 

The restoration of an image which has been blurred due to the rotational motion of the camera is a 

much more complex task. The rotational camera motion blur, is complicated due to the fact that it 

is spatially variant in nature.  Normal identification and restoration approach for linear camera 

motion blur might not be applicable since a digital image is usually sampled in Cartesian 

coordinates and hence is a spatially invariant problem. Image restoration techniques are different 

for spatially invariant and variant problem, with the latter being more difficult to handle. 

There are a number of methods that describe how to deal with general spatially variant problems. 

However, the rotational blur problem is somewhat special, since it could be transformed to or 

approximated by a spatially invariant problem [113]~[114] with appropriate consideration to the 

transformation of coordinates systems. The Polar coordinates transform is one of the possible 

solutions [113]. In [113], two Polar coordinates systems are defined, and the discrete formulation 

of the transform is introduced. The under-sampling phenomenon is also noticed and discussed by 

the authors. Interpolation is used to solve the under-sampling problem. However, the discrete 

formulation presented in [113] is somewhat an analog and digital hybrid, since one pixel could be 

divided into several pieces, say, using internal interpolation. The optimal resolution of the 

interpolation is not provided. 

Hong and Zhang [114] presented yet another coordinate transform restoration method to solve the 

problem of rotational blur. The concept of blurring path is presented, and three specific rules have 
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been devised to fetch the gray level of a given pixel into the new Polar coordinates. Since the 

calculation of the position of the next possible pixel in the new Polar coordinates is needed for 

every point and that the three rules must be respected, their method is not efficient. But, the most 

severe inconvenience is that the sampling interval is not uniform in the new coordinates.  

7.2. Separation of  the Spatially Variance and Invariance 

 
(a). Linear Motion Blur                           (b). Rotational Motion Blur 

Figure 7.1 Comparison of Linear Motion Blur and Rotational Motion Blur 

One of the main objectives of the study is to simplify the restoration of the rotational blurred 

image from a spatially variant problem to a spatially invariant problem. In Cartesian Coordinates, 

the image g(x, y) is sampled by uniform rectangular or square matrix. This mode of sampling is 

convenient for linear motion blur problems, but it is not suitable in the case of rotational blur 

problems, which are spatially variant in nature and are more complicated as shown in Figure 7.1, 

due to two reasons. 

Firstly, the extent of the point spread function (PSF) for rotational motion blur is a function of the 

radius of rotation r, which is the distance between a given point (x, y) and the rotation centre (xo, 

yo). The radius r is given by: 

2 2( , ) ( ) ( )
o o

r x y x x y y= ! + !  (7.1) 
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For a given imaging system, the PSF will be determined by the motion function [114]. In the case 

of rotational motion of the camera, the velocity v of the point (x, y) at time t is given by: 

)(),()(),(),,( tyxrtyxrtyxv !" #=#= &
 (7.2) 

� 

˙ !  is the first time-derivative of θ, which is the angular velocity ω. From Figure 7.1 and Eq. (7.2), 

even when the angular velocity ω is a constant for every point in the image, i.e. spatially 

invariant, the velocity is still a function of x, and y, i.e. spatially variant.  

Secondly, the intensity (or gray level value) of a point in a blurred image is not only decided by 

the prospective region where it is in, but is also influenced by the adjacent regions [1]. In linear 

motion blur, the adjacent regions, which are actually described by the extent of the PSF, are 

straight regions as shown in Figure 7.1(a). In rotational motion blur, the points with the same r 

will only have the same magnitude of velocity, while the directions are different. As shown in 

Figure 7.1(b), even if a constant ω is applied in the rotational motion such that |v1|=|v|, the 

adjacent region, which will affect the proposed point, is an arc for the rotational motion blur 

shown in Figure 7.1(b). This arc was also called as the blurring path in [114]. 

From the above analysis, the PSF in Cartesian coordinates is spatially variant for the rotational 

motion blur, but the spatially variance and invariance are actually separable. As indicated in Eq. 

(7.2), only the first term r in the right hand side is a function of x and y. If in a new coordinates, r 

and ω are independent of each other, then the problem will become spatially invariant, i.e. 

separable. A method is proposed in this work to solve the spatially variant problem of the 

rotational motion blur, which includes three steps: 

1. Separate the spatially variance and invariance by an appropriate coordinates 

transformation, represent the blurred image in the new coordinates and treat it as a 

spatially invariant problem approximately. 
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2. Identify the PSF and apply an image restoration algorithm in the new coordinates. 

3. Using an appropriate inverse transform, obtain the deblurred image in Cartesian 

coordinates. 

Polar coordinates system is the right candidate of coordinates transformation. With a carefully 

designed Cartesian to Polar coordinate transformation, the spatially variance and invariance can 

be separated. The Polar coordinates system defined in this chapter is shown in Figure 7.2. We 

must emphasize the motion of interest here is not the actual relative motion between the camera 

and objects, but rather the relative motion between the image plane and the camera lens. One of 

the significant differences from [113] is that only one Polar coordinates system is defined which 

is more convenient to implement. In Eq. (7.1) and Figure 7.2, it is shown that the radius r is the 

distance from the pixel in question to the centre of rotation where the rotational axis passes 

through. This axis could be located inside or outside of the image. 

 

 Figure 7.2 Polar Coordinates and the Axis of Rotation 

7.2. Discrete Coordinates Transform between Cartesian and Polar 

The coordinates transformation in continuous real domain   

� 

R
2 is denoted by 

  

� 

T
R

: C →P , where 

C  and P  are the continuous image domain in Cartesian and Polar coordinates respectively and 

both C  and P !   

� 

R
2. 

  

� 

T
R

 is a vector function which maps (x, y)!  C  into (r, θ)!  P . For the 
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2-D coordinates, generally the components of the vector function are defined as 
  

� 

T
R

= 

( , )
r

r T x y< = , ( , )T x y
!

! = > , where
  

� 

x,y,r,! "R  and the inverse transform will be 

  

� 

T
R

!1:P → C = ( , )
x

x T r !< = , ( , )
y
T r! != > . The subscript   

� 

R  stands for the real value domain. 

For a given blurred image g(x, y), suppose that the rotation centre is known and located at (xo, yo). 

Radius r is the measurement of the distance from the point in question at (x,y) to the centre of 

rotation. The distance between those two points in the image is important. the distance is defined 

by the Euclidean distance, which is: 

2 2( , ) ( , ) ( ) ( ) ,r o or x y T x y x x y y x y= = ! + ! "R  (7.3) 

The definition of θ in this dissertation is given by: 

tan( / )          0 and 0

2 tan( / )  0 and 0

( , ) ( , ) / 2  0 and 0 ,

0      0 and 0

3 / 2               0 and 0

o o o o

o o o o

o o

o o

o o

a y y x x if x x y y

a y y x x if x x y y

x y T x y if x x y y x y

if x x y y

if x x y y

!

"

! "

"

# # # $ # >%
&

+ # # # $ # <&&
= = # = # > '(

& # = # =
&

# = # <&)

R (7.4) 

In Eq. (7.4), the range of θ is from [0, 2π), instead of [-π, π). This definition is solely for the 

convenience of calculations. θ = 0 corresponds to the positive x-axis in the Cartesian coordinates. 

Therefore, the inverse procedure is: 

( , ) ( , ) cos[ ( , )]     ,x ox T r x r x y x y r! ! != = + " #R  (7.5) 

( , ) ( , ) sin[ ( , )]     ,y oy T r y r x y x y r! ! != = + " #R  (7.6) 

The coordinates transform is straightforward in   

� 

R
2 as shown above. The transformation function 

and its inverse in above equations are both bijective. 

However the coordinates in digital images is the discrete variables, which means 
  

� 

T
Z

= 
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( , )ll T i j< = , ( , )kk T i j= > , where (i,j)!    

� 

C
z

 and (l,k) !    

� 

P
z
.   

� 

C
z
 and   

� 

P
z

 are the discrete 

Cartesian and Polar domains. Both   

� 

C
z
 and   

� 

P
z
!   

� 

Z
2 and similar to the 

  

� 

T
Z

!1. Notice that in   

� 

C
z
 

and   

� 

P
z
, the above geometrical relationships in Eq. (7.3) ~ (7.6) are still valid. If directly replace 

the variables in Eq. (7.3), will obtain: 

2 2( , ) ( ) ( ) ,o or i j i i j j i j= ! + ! "Z  (7.7) 

tan( / )          0 and  0

2 tan( / )  0 and  0

( , ) ( , ) / 2  0 and  0 ,

0      0 and  0

3 / 2               0 and  0

o o o o

o o o o

o o

o o

o o

a j j i i if i i j j

a j j i i if i i j j

i j T i j if i i j j i j

if i i j j

if i i j j

!

"

! "

"

# # # $ # >%
&

+ # # # $ # <&&
= = # = # > '(

& # = # =
&

# = # <&)

Z
(7.8) 

Therefore, in order to find the transform in discrete form, those variables both in Polar and 

Cartesian coordinates need to be digitized such that both 
    

� 

T
Z
!Z

2
"Z

2  and 
    

� 

T
Z

!1
"Z

2
#Z

2 . The 

digitization of Cartesian coordinates is already done, since a digital image is generally a 

uniformly sampled N×M matrix in Cartesian coordinates. Eq. (7.7) and (7.8) should be digitized. 

It is actually a re-sampling procedure.  

The discrete coordinates transform is to create a new matrix in Polar coordinates, say L×K, 

which can express or approximate relationship described by Eq. (7.7) and (7.8) and its inverse. 

Generally, a pixel of a digital image is represented by a small square region, while sometimes a 

rectangle is used. Without the loss of generality, let us assume that the pixels are squares in this 

work. Since the variables need to be resampled in the new Polar coordinate domain, a new 

sampling interval must be determined. For r, its unit of measure is in terms of the number of 

pixels, and for θ is in degree. Digitization is necessary for both r and θ, while both variables are 

not linear; r(i, j) is a quadratic function, while θ(i, j) is a discontinuous trigonometric function. 

Here let us define Polar Resampling Resolutions (PRR), 
r

!  and !
" , which are the resampling 
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interval of discrete Polar coordinates in r and θ, respectively. PRR is the smallest unit of the 

resampling in Polar coordinates, which must be positive. The r and θ will be digitized by using 

the sample intervals 
r

!  and !
" , respectively. In other words, r and θ will be approximated by 

the integral multiple of 
r

!  and !
" . Typically, there are three types of approximations for the 

digitization. They are nearest approximation, flooring approximation and ceiling approximation. 

In this dissertation, the nearest approximation will be applied since there is no significant 

difference between these three methods. The operators of the nearest approximation to describe 

the process of resampling are denoted by ( | )
n r
S r !  and ( | )

n
S

!
! " . In this work, 

r
!  and 

!
"  are 

used to resample the given r(i, j) and θ(i, j) represented by Eq. (7.7) and (7.8). If (n-1) 
r

! ≤ r(i, j) 

< n
r

!  and (m-1) !
" ≤ θ(i, j) < m !

" ,  where n and m are positive integral, then: 

� 

lr = Tl (i, j |!r ) = S(r(i, j) |!r ) =
n "1  if | r(i, j) " (n "1)!r |#|| r(i, j) " n!r |

n       if | r(i, j) " n!r |#|| r(i, j) " (n "1)!r |

$ 

% 

& 
 (7.9) 

� 

kr = Tk (i, j |!" ) = S("(i, j) |!" ) =
m #1 if |"(i, j) # (m #1)!" |$||"(i, j) # m!" |

m      if |"(i, j) # m!" |$||"(i, j) # (m #1)!" |

% 

& 

' 
(7.10) 

where the r(i, j) and θ(i, j) are determined by Eq. (7.7) and (7.8). (
r
l , k

!
) is the pixel in discrete 

Polar Coordinates. The nearest approximation operator is also applied for the digitization of 

inverse transform, which is: 

� 

i =T
i
(l
r
,k

!
|"

r
,"

!
) = i

o
+ S

n
([l

r
# "

r
]# cos[k

!
# "

!
] |1)  (7.11) 

� 

j =T j(lr ,k! |"r ,"!
) = jo + Sn ([lr # "

!
]# sin[k

!
# "

!
] |1)  (7.12) 

The smallest unit of approximation for the inverse transform is defined as 1. The transformation 

function in discrete form and its inverse are respectively defined by 
  

� 

T
Z

  in Eq. (7.9) and 7.10; 

  

� 

T
Z

!1 is in Eq. (7.11) and (7.12). 
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(a). Cartesian Coordinates                                        (b). Polar Coordinates 

Figure 7.3 Support Points and Virtual Points 

The transformation function and its inverse normally are both bijective in   

� 

R
2, however this 

constraint is too strict for discrete formulation in our applications and needs to be relaxed. For 

  

� 

T
Z

, an injective function would be sufficient, it is also known as One-to-One mapping, which 

could be expressed as: 

 Uniqueness:  

If a point in   

� 

P
z
 satisfies

  

� 

B= T
Z
(A) , there should be one and only 

one point A  in   

� 

C
z
 such that 

  

� 

B= T
Z
(A)  and 

  

� 

T
Z

!1
(B)" A . 

(7.13) 
 

The uniqueness means the transformation and its inverse will not introduce errors to the lattice. 

Similarly, 
  

� 

T
Z

!1 should satisfy the condition of sufficiency: 

 Sufficiency:  

! point A !  

� 

C
z
, there should exist one and only one corresponding 

point B !  

� 

P
z
 such that 

  

� 

B= T
Z
(A) .  

! point B !  

� 

P
z
, there exists one and only one corresponding point 

A !
  

� 

C
z
 such that 

  

� 

A = T
Z

!1
(B) . 

(7.14) 
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In order to satisfy the uniqueness, 
r

!  and !
"  must be carefully selected, since the resampling of 

the transform and its inverse could possibly introduce error. Fortunately, the error is bounded and 

controllable. For the transform from Cartesian to Polar, the errors will be bounded by 
r

!  and !
"  

for r and θ respectively. For the error of the inverse transform, let let’s at the Eq. (7.11) and (7.12) 

again. If the PRR approach a positive but infinitesimally small value, both error for transform and 

its inverse could be eliminated, in other words, the Uniqueness can be satisfied by selecting a 

proper small 
r

!  and !
" .  

The first condition in Eq. (7.14) is easy to satisfy, while the second one is too strict. It will be 

replaced by a weaker constraint in the next section, since the Sufficiency condition of 
  

� 

T
Z

!1 cannot 

be fulfilled by selecting proper 
r

!  and !
" . There are two reasons why the second condition is 

too strict. Firstly, the under-sampling in Polar coordinates is inevitable. This phenomenon is more 

serious for θ, while it is not so obvious for r, although the problem still exists. Please note that r(i, 

j) is a quadratic function, which changes slower when it is closer to the rotational centre. With the 

increase in r, the sampling space of θ between two consecutive points will become smaller; with 

the decrease of r, the sampling interval of θ is relatively sparse. This is the main reason for which 

the Sufficiency can not be assured during the coordinate transformation from Polar to Cartesian 

coordinates when r is small. Secondly, the digitization in Polar coordinates is another reason. The 

under-sampling is related to the choice of PRR and the process of the digitization. When a smaller 

PRR for re-sampling is selected, under-sampling problem becomes more severe. With the 

decrease in PRR, the approximation will become more accurate, while there are more “empty 

points” in Polar coordinates, as shown in Figure 7.3. The transformations presented in [113] and 

[114], also cannot guarantee the sufficiency of 
  

� 

T
Z

!1. If Sufficiency is satisfied, the Uniqueness 

cannot be satisfied. Fortunately, the sufficiency of 
  

� 

T
Z

!1 is somewhat redundant and it could be 

relaxed 
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7.3. Pixel Mapping between the Two Coordinates and the 
Interpolation of  the Virtual Points 

The pixels in   

� 

P
z
, say (l, k), which are transformed from the points of Cartesian coordinates, such 

as (i, j), are called the Support Points (SP) in Polar coordinates. After the transformation and gray 

level mapping, the corresponding gray level of the SP in Polar coordinates can be obtained. Since 

the sufficiency condition is relaxed, some points in   

� 

P
z
 are empty. Those “empty points” are 

called as virtual points (VP), which are between the support points. Suppose a digital blurred 

digital image g(i, j) is represented by an N×M matrix. After the coordinates transformation, an 

L×K matrix in Polar coordinates for the given 
r

!  and !
"  is created, as shown in Figure 7.3. 

The corresponding gray level of the SP in Polar coordinates is given by: 

{ [ ( , ) | ], [ ( , ) | ] | } ( , )
n r n
S r i j S i j g i j

! !
!" # # # =  (7.15) 

where Г is the image in discrete Polar domain. The points in Eq. (7.15) are only the SP. Every 

pixel of g(i,j) in Cartesian coordinates will be assigned to the corresponding SP in Г(l, k). Only 

the SP in Г(l, k) will be assigned gray values after the mapping. However, the VPs in the Polar 

coordinates are still empty, as mentioned previously. This blankness is not desired. 

Figure 7.3 illustrates the pixel mapping from the Cartesian to the Polar coordinates. After the 

operation by using the nearest approximation mentioned earlier, a given r = n×
r

! is represented 

by the circles of dash lines in Figure 7.3(a). The round dots in Figure 7.3(b) are the pixels in 

g(i,j). After the coordinates transformation, these points will be mapped into Polar coordinates, 

again represented by the round dots in Figure 7.3(b), which are defined as SPs. Virtual points are 

shown by the black triangles in Figure 7.3(b). If the inverse coordinates transform described by 

Eq. (7.11) and (7.12) is applied, these points will be located between the pixels in the Cartesian 



Weimiao YU Bayesian Approaches for Image Restoration 

ME Department of National University of Singapore 
145 

coordinates. Obviously, the indices for the black triangular points in Cartesian coordinates will 

not be integers. Note these VPs do not really exist in the Cartesian coordinates. That is why they 

are called “Virtual Points” here. These VPs with the same r in Figure 7.3(b) between the two SPs 

will be uniformly spaced by the interval !
" . The situation is similar to r axis. The uniform re-

sampling strategy here will give us convenience in the further processing of the image. The 

algorithms for spatially invariant problem in Cartesian coordinates could be easily applied in the 

new Polar coordinates. 

As analyzed above, Г(l, k) in   

� 

P
z
 is not continuous after the gray value mapping since the VPs are 

not yet defined. The gray levels of the VPs are called the “missing data” in some literatures. 

Actually, it is a function regression problem, since the gray levels of some unseen data are 

needed. Continuity and smoothness are normal assumptions in the function regressions. For a 

given l, and with r =l×
r

! , if there are p VPs between two SPs, it is assumed that the sampling 

rate of image in Cartesian coordinates is small enough such that linear interpolation based the two 

SPs  can be applied to obtain the gray values of the p VPs. The situation is similar when dealing 

with θ. Theoretically the interpolation along either dimension can be done first. Since the under-

sampling is more severe for θ, it is preferred to tackle θ first. The assumption is similar as in the 

case of r, the only difference is that some of the VPs already have gray values if the interpolation 

of θ has been done first. Therefore, for a given k, and θ=k× !
" , if there are q undefined VPs 

between SPs and/or defined VPs, it is assumed that the sampling rate of image in Cartesian 

coordinates is small enough such that linear interpolation can be used to obtain two known points 

to obtain the gray value of the q unknown VPs. Admittedly, there are some advanced 

interpolation methods which could be better for VPs estimation, the linear interpolation using the 

above assumptions is solely for computational efficiency consideration. The boundary is an issue 

too, since the boundary points are empty and cannot be obtained by the internal interpolation. In 
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this chapter, the boundaries are determined by the mean value of Cartesian image. 

After the gray level mapping, an image Г in   

� 

P
z
 can be obtained, in which the rotational blur could 

be treated as a spatially invariant problem approximately. In   

� 

P
z
, the existed spatially invariant 

algorithm can be easily applied for the rotational blur identification and restoration. Of course, 

after the processing, the image will be transformed back to Cartesian coordinates for  display and 

do further processing, such as edge detection, boundary tracing, etc. 

7.4. Optimization of  the PRR 

The bijective transform functions in   

� 

R
2  are relaxed to be injective for   

� 

Z
2 . For 

  

� 

T
Z

!1 , the 

Sufficiency condition cannot be assured. Notice that in pixel mapping between Cartesian and 

Polar coordinates, only the SPs are involved. 
  

� 

T
Z

 is a function, while strictly 
  

� 

T
Z

!1 might not be 

one, since the VPs in   

� 

P
z
 do not have corresponding point in   

� 

C
z
. 
  

� 

T
Z

!1 is only a mapping relation, 

but it is still called a function.  

After the coordinates transformation and the mapping of gray levels, N×M SPs in   

� 

P
z
 are obtained 

and there are about (L×K)-(N×M) empty VP in Г(l, k) totally. Based on the assumption on 

continuity and smoothness, linear interpolation is applied to obtain the gray levels of those blank 

VPs in Polar coordinates. When the PRR approaches a positive but infinitesimally small value, 

the error of the transformation and its inverse will be minimized or eliminated. While if PRR is 

too small, the problem of under-sampling is more severe, which also means there are more 

“empty” VPs in   

� 

P
z
. In other word, the Insufficiency is more serious when PRR is smaller.  

The Sufficiency condition of the inverse transform function is relaxed in previous section, while 

the “Insufficiency” of the image in Polar coordinates should be minimized. The assumptions for 
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the linear interpolation will be doubtful if the distance between two SPs is too big. This 

optimization is actually a weaker constraint than the Sufficiency. The cost function for the 

optimization is the number of the “missing data”, or the number of the VPs, which is: 

( ) ( )P L K N M= ! " !   (7.16) 

The expression of P is quit simple as shown in Eq. (7.16), but it is a function of N, M, io, jo, r
!  

and !
" . In Eq. (7.16), the contribution of the boundary points to P  is ignored. Then the 

optimization problem is: 

1,  . . ( )  and A ( )

( , )

( )

Z Z Z ZA exists only one unique B S T B A B

r

Inf P

!
"

# $ $ = =

% %

T TC P  (7.17) 

The meaning of Eq. (7.17) is actually a constrained optimization, e.g. to find the best PRR to 

minimize the number of VPs without violating the Uniqueness of 
  

� 

T
Z

. Theoretically, if P=0, the 

Sufficiency condition will be satisfied. Eq. (7. 17) is a weaker constraint than Eq. (7.14). After 

this optimization, the transformation is called as Compact Discrete Polar Transform. 

Numerical steepest gradient optimization methods could be applied to optimize Eq. (7.17). As 

stated above, the problem introduced by under-sampling is more serious in θ, optimization of the 

cost function is done in θ first, then based on the determined !
" , optimized 

r
!  is obtained. 

The PRR are very important parameters in the compact discrete polar transform. Their influence 

in the discrete polar transformation is shown in Figure 7.4. In Figure 7.4, two different PRRs are 

applied for the discrete polar transform for a 128×128 lattice with the same rotation center at (64, 

64).  
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(a) Digitized Radius and Angle in Discrete Polar Coordinates with (

� 

!
r

= 5,
  

� 

!
"

= 5
o ) 

           
(b) Digitized Radius and Angle in Discrete Polar Coordinates with (

� 

!
r

= 0.9 ,
  

� 

!
"

= 0.3
o ) 

Figure 7.4 r(i, j) and θ(i, j) with Different PRR for a 128×128 Image Rotation Centre at (64, 64) 

From Figure 7.4, it is obvious that the PRR in Figure 7.4(a) is too big since the r and θ, are 

discontinuous. There are obvious step artifacts in those two functions. Under this circumstance, 

the Uniqueness will be violated. Some different pixels in Cartesian coordinates will be mapped to 

a same point in the discrete polar coordinates, which is not acceptable. With the decrease in PRR, 

the digitized radius and angle in the Polar coordinates will become continuous, as shown in 

Figure 7.4(b).  

7.5. Simulation and Experiments 

As stated in the last section, the “insufficiency” in the transformation must be minimized. 

According to Eq. (7.17), the steepest gradient optimization algorithm is applied to determine the 
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optimized PRR for this given model, which is 0.9
r

! =  and 1/ 3
!

" = ° . The results are shown in 

Figure 7.4(b). In this figure, both radius and angle are smooth. At the same time, the number of 

virtual points is minimized. In the discrete Polar coordinates, the gray levels of the virtual points 

will be determined by the linear interpolation. 

As analyzed above, the rotational blurred image could be treated as a spatially invariant problem 

in   

� 

P
z
 approximately. The formulation of blurring procedure and deconvolution are exactly the 

same in Cartesian coordinates after replacing the variables in the new coordinates. For the blur 

identification and restoration algorithm, please refer to [115][11] etc. for an overview. We also 

presented an algorithm on how to identify the extent of the PSF in [112].  

 

 

(a)Square                                  (b) Coins                               (c)Canal 
(Blurred degree=13.3°)                (Blurred degree=16.7°)           (Blurred degree=6.7°) 

 Figure 7.5 The Simulations of Rotational Motion Blur by the Compact Discrete Polar Coordinates 
Transform for 256×256 Lattices with Rotation Centre at (128,128) 

Since the convolution and the deconvolution are inverse operations, some images are simulated to 

obtain its rotational blurred version by using the coordinates transform described in this Chapter. 

Three images are blurred in   

� 

P
z
 after the Compact Discrete Polar Transform is applied and their 
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Cartesian versions are displayed in Figure 7.5. The size of the images is 256×256 and the center 

of rotation is at the centre of the image, or at (128, 128). In this case, the optimized 
r

!  and !
"  

are 0.45 and 0.33° respectively, according to the steepest gradient optimization of the PRR. The 

non-blurred images in Cartesian coordinates are shown on the top and the simulated blurred 

images are at the bottom. 

The PSF in  

� 

P
z
 is assumed to be a constant angular velocity in the simulations. For more details 

about the more complicated PSF, which is not a constant angular velocity, please refer to [1]. All 

experimental results displayed in Figure 7.5 use the optimized PRR according to Eq. (7.17). 

When non-optimized PRR is applied for the transformation, there will be some artificial artifacts. 

The simulated blurred image will be discontinuous at some points in the Cartesian coordinates if 

the transformation is applied without optimizing the PRR. It is another interesting topic to discuss 

blurred image using the transformation with and without optimization of the PRR. However, this 

is beyond the scope of the current work. 

In the next example, the noisy rotational blurred image of “Camera Man” is simulated and then 

restored in Polar coordinate domain. Finally, the restored image is shown in the Cartesian 

coordinates by using the inverse Polar transform. This procedure is also shown in Figure 7.6. The 

original image of the “Camera Man” is shown in Figure 7.6(a). The SPs of the image are shown 

in Figure 7.6(b). After the interpolation the image in Polar coordinate domain is shown in Figure 

7.6(c). And its noisy rotational blurred version in the same domain is shown in Figure 7.6(d).  

The noisy rotational blurred image in Cartesian coordinates is shown in Figure 7.7(a). The 

denoised image in Polar coordinate is shown in Figure 7.7(b). The deblurred image in Polar 

coordinate domain is shown in Figure 7.7(c); and finally, the restored image in Cartesian 

coordinate domain is shown in Figure 7.7(d).  
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(a). Original Image of Cameraman                          (b). SPs in Discrete Polar Domain 

                 
(c). Image in Discrete Polar Domain                      (d). Blurred Image in Polar Domain 

Figure 7.6. Original Image of Cameraman, the SPs in Polar Domain, the Image in Polar Domain and 

the Blurred image in Polar Domain (Blurred Degree=18°) 

                
(a). Blurred Image in Cartesian Domain                  (b) Denoised Image in Polar Domain 

                
(c). Restored Image in Polar Domain                  (d) Restored Image in Cartesian Domain 

Figure 7.7 The Restoration of Rotational Blurred Image in Polar Domain and the Restored Image in 
Cartesian Domain 
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From this simulation, the Compact Discrete Polar Coordinates transform can successfully change 

a spatially variance problem of rotational blurred image to a more manageable spatially invariant 

problem in the new Polar domain. Both the blurring and deblurring procedures could be 

successfully simulated in Polar coordinates. The inverse transformation can also convert the 

image in Polar coordinate back to the Cartesian coordinates and achieve good visual results. 

 

Figure 7.8 Setup of the Rotational Motion Platform and Imaging System 

In order to test presented approach in real rotation blurred image restoration, an experimental 

platform was established by Mr. Lee Shay Liang[116], as shown in Figure 7.8. The calibration of 

the camera was done by Mr. Ng Wei Hiong [117].  

                                
(a) Image for the Rotation Centre Calibration                  (b) Blurred Image for Calibration 

Figure 7.9 Calibration of Rotation Centre 
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Since the rotational centre should be known to apply the coordinates transformation, the 

rotational centre is obtained by the camera calibration instead of using other rotational centre 

identification methods to avoid the influence of the error of the location of the rotational centre. 

The centre of rotation is easily obtained by the artificial image. The image for calibration and the 

blurred image are shown in figure 7.9.  

After the calibration, the rotation center is found to be at (126, 127) in the Cartesian coordinates. 

The image is mounted on the platform and then captured by a camera, which is in rotational 

motion. The captured images are shown in Figure 7.10(a) and 7.10(c).  

         
(a) Rotational Blur Image of “Star”                    (b) Restored Image by Proposed Approach 

           
(c) Rotational Blur Image of “Cameraman”                (b) Restored Image by Proposed Approach 

Figure 7.10 Restoration of the Real Rotation Blurred Images 
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From the above simulations and experiments, the Compact Discrete Polar transformation is a 

good approach to simplify the spatially variant problem to a spatially invariant one. It can 

successfully restore the rotational blurred image. In the new Compact Polar coordinate domain, 

the spatially invariant formulation could be ready to solve the rotational blurred image, which is 

spatially variant in Cartesian coordinates.  

7.6. Summary 

In this chapter, a Discrete Compact Polar Coordinates Transformation is developed to handle the 

image restoration task of a rotational blurred image. By defining the coordinates transformation 

carefully, the initial spatially variant problem could be converted and simplified to a spatially 

invariant problem in the new coordinates. The transformation in continuous domain is 

straightforward; however, additional issues in the discrete domain are considerable. The linear 

interpolation is applied to deduce the values of the VPs for the consideration of computational 

efficiency based on the assumption made during sampling. The constraint of Sufficiency of the 

transformation is relaxed and replaced by a weaker constraint, i.e. the optimization of the PRR 

and minimization of the number of VPs. Since the number of the “empty points” is minimized, 

the transformation is so-called Compact Discrete Polar Transformation. 

From the experimental results, images in discrete Cartesian lattices can be successfully 

rotationally blurred by simulation based the proposed transformation. The invariance and 

variance of the rotational blur problem are separable in the compact polar coordinates transform. 

Two real rotational blurred images captured by the established platform are used to validate the 

proposed approach. Both the simulation and the experiments achieved excellent results. 

The proposed coordinates transformation has two advantages, uniform sampling and compact 

format. Uniform sampling allows the traditional spatially invariant image identification and 
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restoration algorithms in Cartesian coordinates to be readily applied to the spatially variant 

problem in the new coordinates by variable replacement according to the three steps stated in 

section 2 in this Chapter. The compactness will reduce the under-sampling in the Polar 

coordinates. The linear interpolation method is applied to deduce the gray level of the virtual 

points based on the assumptions made on the sampling interval in Cartesian.  
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8 .  C h a p t e r  8  
 
C o n c l u s i o n  

The objective of this dissertation is to develop approaches to handle image restoration problem 

for images blurred by motion of the camera or the objects in questions. Bayesian approaches have 

been chosen due to its robustness and accuracy. Its solid and established statistical foundation 

based on which efficient theoretical approaches could be built to solve our problems at hand.  

Necessary mathematical representations of images have been established in Chapter 2. They are 

consistently used in the subsequent development of the proposed approaches and algorithms. Due 

to the importance of discontinuities in providing useful cue for the image restoration work, this 

work began with the identification of the edge points using the proposed approach on 1-D 

piecewise constant signals in order to gather better understanding of the potential difficulties at 

hand. Posterior evidence is proposed to select model orders since the prior distribution function is 

not proper. By assuming that the model is a Binomial distribution, the calculation of the evidence 

is simplified in Bayesian theory, and to avoid evaluating the posterior marginal likelihood 

function directly. Simulation and experiments proved that this approach is robust and accurate. 

Subsequently, a novel Bayesian kernel approach on 1-D and 2-D discontinuous signal/image 

restoration is presented. Based on the assumption that the signals are Local Piecewise Linear, 

noise was removed and the discontinuities were identified and preserved. a novel convex cost 

function for image noise removal therefore is proposed. This doing helped to resolve the ill-

conditioned problem of image restoration. The proposed cost function is proven to have only one 

global minimum. The cost function was minimized by tuning a proper hyper-parameter η through 

the steepest gradient optimization algorithm. The results are compared with those of LPA-ICI 

approach, as the latter is known to be recent and good. There are some other existing methods, 
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but their performance is not comparable to the proposed method nor that of LPA-ICI. The 

proposed approach achieved similar results: ISNR and PSNR is slightly low than ICI, the 1- and 

2- Norm error are close, and the Infinite norm error is much smaller than that of LPA-ICI when 

noise level is high, i.e. at low SNR. However, it is slower than LPA-ICI, this is because of the 

necessity in evaluating the inverse of the Hessian matrix. LPA-ICI, on the other hand, requires 

convolution and de-convolution computation, which could be fast by using the well established 

FFT in the calculation.  

Restoration of images blurred by motion of the camera and/or objects in the scene is also one of 

the aims of this dissertation. After the noise has been successfully removed with the edges 

preserved, the characteristics of the Point Spread Function (PSF) should be gathered with ease. 

The PSF will help to identify the motion blur, based on which the degraded image could be 

restored. A statistical approach for motion blur identification was presented in Chapter 6. 

Experimental results demonstrated its effectiveness even under low SNR conditions. It is also 

robust and accurate. 

Finally, a more difficult problem is studied, the restoration of images under spatially variant 

condition. This would be the case when an image is blurred by rotation motion. In this situation, a 

normal approach would be to represent every pixel by a PSF before any restoration work could be 

performed. This is obviously not feasible as the computational work would be fastidious. With 

the innovative approach using a novel coordinate transformation, the spatially variant problem is 

reduced to a spatially invariant one. The formulation of the Discrete Polar Coordinates 

Transformation and its inverse are presented in Chapter 7, and it has two advantages, viz. 

Uniform Sampling Interval and Compactness (less missing data points after coordinate 

transformation). The Uniform Sampling allows the existing approaches of blur identification and 

image restoration methods to be applied to even rotational blur problem. Note that blurring due to 

rotational blur is originally a spatially variant problem. Experimental results convincingly show 
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the effectiveness of the proposed method. Furthermore, simulation shows that Compact Discrete 

Polar Transformation also can be applied for the problem of out-of-focus blurring problem, which 

is 1-D spatially invariant in the Polar domain. However, results are not presented in this 

dissertation due to the limitation of space. 

For future works, some recommendations are as following: 

1. The use of “traveling windows” in Chapter 5 for noise removal requires further refinement. 

Further works should be carried out to determine the size of the window in relation to the 

quality of the image in question. A correct size of the window will help to speed up the 

computation and hence the procedure as a whole. In addition, a global GML representation  

of image, without using windows, is also desired, but, an efficient algorithm with a 

manageable size of data must be developed. 

2. A more accurate global noise estimation method and the associated computation algorithm 

are needed. With more accurate noise variance estimation, further performance improvement 

of the proposed restoration approach can be achieved. This will help in the optimization of 

the hyper-parameter η. Furthermore, new or improved optimization technique should be 

developed to reduce the residue of Cost function that theoretically should be zero. 

3. In the work on the restoration of images blurred by rotational motion, the centre of rotation 

was based on calibration technique, which might not be accurate in some situations. A proper 

calibration technique should be established to estimate accurately the centre of rotation. 
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