2,643 research outputs found

    Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs). II. Effects of DEPs on T-cell-mediated immune responses in rats.

    Get PDF
    Previously, we showed that diesel exhaust particles (DEPs) suppressed pulmonary clearance of Listeria monocytogenes (Listeria) and inhibited the phagocytosis of alveolar macrophages and their response to Listeria in the secretion of interleukin (IL)-1 beta, tumor necrosis factor alpha, and IL-12. In this report we examined the effects of DEPs and/or Listeria on T-cell development and secretion of IL-2, IL-6, and interferon (IFN)-gamma. We exposed Brown Norway rats to clean air or DEPs at 50 or 100 mg/m3 for 4 hr by nose-only inhalation and inoculated with 100,000 Listeria. Lymphocytes in the lung-draining lymph nodes were isolated at 3 and 7 days postexposure, analyzed for CD4+ and CD8+ cells, and measured for cytokine production in response to concanavalin A or heat-killed L. monocytogenes. Listeria infection induced lymphocyte production of IL-6. At 7 days postinfection, lymphocytes from Listeria-infected rats showed significant increases in CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased production of IFN-gamma and IL-2 receptor expression compared with the noninfected control. These results suggest an immune response that involves the action of IL-6 on T-cell activation, yielding Listeria-specific CD8+ cells. DEP exposure alone enhanced lymphocyte production of both IL-2 and IL-6 but inhibited lymphocyte secretion of IFN-gamma. In rats exposed to 100 mg/m3 DEPs and Listeria, a 10-fold increase occurred in pulmonary bacterial count at 3 days postinfection when compared with the Listeria-only exposure group. The isolated lymphocytes showed a significant increase in the CD4+ and CD8+ cell counts and the CD8+/CD4+ ratio and exhibited increased IL-2 responsiveness and increased capacity in the secretion of IL-2, IL-6, and IFN-gamma. This T-cell immune response was sufficient to allow the Brown Norway rats to clear the bacteria at 7 days postinfection and overcome the down-regulation of the innate immunity by the acute DEP exposure

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response

    Broad Resistance to ACCase Inhibiting Herbicides in a Ryegrass Population Is Due Only to a Cysteine to Arginine Mutation in the Target Enzyme

    Get PDF
    BACKGROUND: The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3) from the UK. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72%) that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. CONCLUSION/SIGNIFICANCE: This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels "creeping", multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P &lt; 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    Fruit crops: a summary of research, 1998

    Get PDF
    Pesticide deposition in orchards: effects of pesticide type, tree canopy, timing, cultivar, and leaf type / Franklin R. Hall, Jane A. Cooper, and David C. Ferree -- The influence of a synthetic foraging attractant, Bee-Scent™, on the number of honey bees visiting apple blossoms and on subsequent fruit production / James E. Tew and David C. Ferree -- The reliability of three traps vs. a single trap for determining population levels of codling moth in commercial northern Ohio apple orchards / Ted W. Gastier -- Evaluation of an empirical model for predicting sooty blotch and flyspeck of apples in Ohio / Michael A. Ellis, Laurence V. Madden, and L. Lee Wilson -- Influence of pesticides and water stress on photosynthesis and transpiration of apple / David C. Ferree, Franklin R. Hall, Charles R. Krause, Bruce R. Roberts, and Ross D. Brazee -- Influence of temporary bending and heading on branch development and flowering of vigorous young apple trees / David C. Ferree and John C. Schmid -- The effect of apple fruit bruising on total returns / Richard C. Funt, Ewen A. Cameron, and Nigel H. Banks -- Yield, berry quality, and economics of mechanical berry harvest in Ohio / Richard C. Funt, Thomas E. Wall, and Joseph C. Scheerens -- Monitoring flower thrips activities in strawberry fields at two Ohio locations / Roger N. Williams, M. Sean Ellis, Dan S. Fickle, and Carl M. Pelland -- Cluster thinning effects on fruit weight, juice quality, and fruit skin characteristics in 'Reliance' grapes / Yu Gao and Garth A. Cahoon -- Effects of various fungicide programs on powdery mildew control, percent berry sugar, yield, and vine vigor of 'Concord' grapes in Ohio / Michael A. Ellis, Laurence V. Madden, L. Lee Wilson, and Gregory R. Johns -- Influence of growth regulators, cropping, and number on replacement trunks of winter-injured 'Vidal Blanc' grapes / David C. Ferree, David M. Scurlock, and Rick Evans -- Effect of new herbicides on tissue-cultured black raspberry plants / Richard C. Funt, Thomas E. Wall, and B. Dale Stokes -- Investigating the relationship between vine vigor and berry set of field-grown 'Seyval Blanc' grapevines / Steven J. McArtney and David C. Ferree -- Summary of Ohio Fruit Growers Society apple cider competition, 1993-1997 / Winston Bash and Diane Mille

    mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in individuals with antibody deficiency syndromes

    Get PDF
    Individuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity. In coronavirus disease 2019 (COVID-19)-naive individuals with PAD, anti-spike and RBD titers increase after mRNA vaccination but wane by 90 days. Those vaccinated after SARS-CoV-2 infection develop higher and more sustained responses comparable with healthy donors. Most vaccinated individuals with PAD have serum-neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this is improved by boosting. Thus, some immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of individuals with PAD with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron

    SARS-CoV-2 booster vaccination rescues attenuated IgG1 memory B cell response in primary antibody deficiency patients

    Get PDF
    BACKGROUND: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. METHODS: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. RESULTS: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4 CONCLUSION: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals

    Immunoglobulin replacement products protect against SARS-CoV-2 infection in vivo despite poor neutralizing activity

    Get PDF
    Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms
    corecore