2,322 research outputs found
Glauber dynamics in the continuum via generating functionals evolution
We construct the time evolution for states of Glauber dynamics for a spatial
infinite particle system in terms of generating functionals. This is carried
out by an Ovsjannikov-type result in a scale of Banach spaces, leading to a
local (in time) solution which, under certain initial conditions, might be
extended to a global one. An application of this approach to Vlasov-type
scaling in terms of generating functionals is considered as well.Comment: 24 page
Exact Results for Tunneling Problems of Bogoliubov Excitations in the Critical Supercurrent State
We show the exact solution of Bogoliubov equations at zero-energy in the
critical supercurrent state for arbitrary shape of potential barrier. With use
of this solution, we prove the absence of perfect transmission of excitations
in the low-energy limit by giving the explicit expression of transmission
coefficient. The origin of disappearance of perfect transmission is the
emergence of zero-energy density fluctuation near the potential barrier.Comment: 6 pages, 3 figures; Proceedings of QFS200
Complete description of polarization effects in e^+e^- pair production by a photon in the field of a strong laser wave
We consider production of a e^+e^- pair by a high-energy photon in the field
of a strong laser wave. A probability of this process for circularly or
linearly polarized laser photons and for arbitrary polarization of all other
particles is calculated. We obtain the complete set of functions which describe
such a probability in a compact invariant form. Besides, we discuss in some
detail the polarization effects in the kinematics relevant to the problem of
electron-photon conversion at photon-photon and electron-photon colliders.Comment: 14 pages, 8 figure
Simple choreographies of the planar Newtonian -body Problem
In the -body problem, a simple choreography is a periodic solution, where
all masses chase each other on a single loop. In this paper we prove that for
the planar Newtonian -body problem with equal masses, , there are
at least different main simple choreographies. This
confirms a conjecture given by Chenciner and etc. in \cite{CGMS02}.Comment: 31pages, 6 figures. Refinements in notations and proof
Markov evolutions and hierarchical equations in the continuum I. One-component systems
General birth-and-death as well as hopping stochastic dynamics of infinite
particle systems in the continuum are considered. We derive corresponding
evolution equations for correlation functions and generating functionals.
General considerations are illustrated in a number of concrete examples of
Markov evolutions appearing in applications.Comment: 47 page
Fast k-NN classifier for documents based on a graph structure
In this paper, a fast k nearest neighbors (k-NN) classifier for documents is presented. Documents are usually represented in a high-dimensional feature space, where terms appeared on it are treated as features and the weight of each term reflects its importance in the document. There are many approaches to find the vicinity of an object, but their performance drastically decreases as the number of dimensions grows. This problem prevents its application for documents. The proposed method is based on a graph index structure with a fast search algorithm. It’s high selectivity permits to obtain a similar classification quality than exhaustive classifier, with a few number of computed distances. Our experimental results show that it is feasible the use of the proposed method in problems of very high dimensionality, such as Text Mining
Spin-Polarized Electron Transport at Ferromagnet/Semiconductor Schottky Contacts
We theoretically investigate electron spin injection and spin-polarization
sensitive current detection at Schottky contacts between a ferromagnetic metal
and an n-type or p-type semiconductor. We use spin-dependent continuity
equations and transport equations at the drift-diffusion level of
approximation. Spin-polarized electron current and density in the semiconductor
are described for four scenarios corresponding to the injection or the
collection of spin polarized electrons at Schottky contacts to n-type or p-type
semiconductors. The transport properties of the interface are described by a
spin-dependent interface resistance, resulting from an interfacial tunneling
region. The spin-dependent interface resistance is crucial for achieving spin
injection or spin polarization sensitivity in these configurations. We find
that the depletion region resulting from Schottky barrier formation at a
metal/semiconductor interface is detrimental to both spin injection and spin
detection. However, the depletion region can be tailored using a doping density
profile to minimize these deleterious effects. For example, a heavily doped
region near the interface, such as a delta-doped layer, can be used to form a
sharp potential profile through which electrons tunnel to reduce the effective
Schottky energy barrier that determines the magnitude of the depletion region.
The model results indicate that efficient spin-injection and spin-polarization
detection can be achieved in properly designed structures and can serve as a
guide for the structure design.Comment: RevTex
Transmission and Reflection of Collective Modes in Spin-1 Bose-Einstein Condensate
We study tunneling properties of collective excitations in spin-1
Bose-Einstein condensates. In the absence of magnetic fields, the total
transmission in the long wavelength limit occurs in all kinds of excitations
but the quadrupolar spin mode in the ferromagnetic state. The quadrupolar spin
mode alone shows the total reflection. A difference between those excitations
comes from whether the wavefunction of an excitation corresponds to that of the
condensate in the long wavelength limit. The correspondence results in the
total transmission as in the spinless BEC.Comment: 6 pages, 5 figure
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
- …
