419 research outputs found
Quantified movement test of core muscles for Athletes
The purpose of this study was to compare the different of the core muscles ability between normal subjects and athletes of an assessment consisted of seven movement tests. Nineteen participants were voluntarily recruited in this study and divided into normal subjects (N=9, age=20.2+-0.7 y/o, weight:63.7+-11.7 kg, height:170.9+-6.7 cm) and collegiate athletes (N=10, age=19.9+-1.0 y/o, weight; 72.4+-7.8 kg, height; 172.5+-4.5 cm). The result shows that the path length of plank, bird dog with right-hand raise, bird dog with left-hand raise, right side plank, right bridge, left bridge and area of right bridge, left bridge has significant differences between two groups (Table 1). Athletes exhibit shorter path length and smaller path area in all of these data
An overview of the Phalaenopsis orchid genome through BAC end sequence analysis
<p>Abstract</p> <p>Background</p> <p><it>Phalaenopsis </it>orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding.</p> <p>Results</p> <p>We used two BAC libraries (constructed using the <it>Bam</it>HI and <it>Hin</it>dIII restriction enzymes) of <it>Phalaenopsis equestris </it>to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the <it>Bam</it>HI and <it>Hin</it>dIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the <it>Phalaenopsis </it>genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or <it>Arabidopsis</it>, and even fewer mapped to the rice genome. This work will facilitate analysis of the <it>Phalaenopsis </it>genome, and will help clarify similarities and differences in genome composition between orchids and other plant species.</p> <p>Conclusion</p> <p>Using BES analysis, we obtained an overview of the <it>Phalaenopsis </it>genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the <it>Phalaenopsis </it>genome and advances our knowledge thereof.</p
Surface Metallization of Polyimide as a Photoanode Substratefor Rear-Illuminated Dye-Sensitized Solar Cells
Plastic film is promising as a photoanode substrate of dye-sensitized solar cell (DSSC) for flexible applications, while a lowtemperaturesintering process is generally adopted for the TiO2 mesoporous film due to unstable thermal property of general plastics.This study demonstrates that typical high-temperature TiO2 sintering can be adopted for preparing the photoanode when using asurface-metallized polyimide (PI) film. A Sn/Ni bi-layer is formed on a PI film via a chemical process as the conductive layer. TheSn/Ni-coated PI photoanode can withstand high-temperature TiO2 sintering at a peak temperature of 430âŚC for 30 min withoutsignificant visual deformation due to high thermal stability of PI and strength reinforcement caused by surface metallization. TheDSSC employing the Sn/Ni-coated PI film as the photoanode substrate reaches an energy conversion efficiency of 3.44% under1 sun rear-side illumination
Direct growth of ultra-long platinum nanolawns on a semiconductor photocatalyst
A template- and surfactant-free process, thermally assisted photoreduction, is developed to prepare vertically grown ultra-long Pt nanowires (NWs) (about 30-40 nm in diameter, 5-6 Îźm in length, and up to 80 NWs/100 Îźm2 in the wire density) on TiO2 coated substrates, including Si wafers and carbon fibers, with the assistance of the photocatalytic ability and semiconductor characteristics of TiO2. A remarkable aspect ratio of up to 200 can be achieved. TEM analytical results suggest that the Pt NWs are single-crystalline with a preferred ă111ă growth direction. The precursor adopted and the heat treatment conditions are crucial for the yield of NWs. The photoelectrons supplied by TiO2 gives rise to the formation of nano-sized Pt nuclei from salt melt or solution. The subsequent growth of NWs is supported by the thermal electrons which also generated from TiO2 during the post thermal treatment. The interactions between the ions and the electrons in the Pt/TiO2 junction are discussed in this study
The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders
Dendritic spines are the location of excitatory synapses in the mammalian nervous system and are neuron-specific subcellular structures essential for neural circuitry and function. Dendritic spine morphology is determined by the F-actin cytoskeleton. Factin remodeling must coordinate with different stages of dendritic spinogenesis, starting from dendritic filopodia formation to the filopodia-spines transition and dendritic spine maturation and maintenance. Hundreds of genes, including F-actin cytoskeleton regulators, membrane proteins, adaptor proteins, and signaling molecules, are known to be involved in regulating synapse formation. Many of these genes are not neuron-specific, but how they specifically control dendritic spine formation in neurons is an intriguing question. Here, we summarize how ubiquitously expressed genes, including syndecan-2, NF1 (encoding neurofibromin protein), VCP, and CASK, and the neuron-specific gene CTTNBP2 coordinate with neurotransmission, transsynaptic signaling, and cytoskeleton rearrangement to control dendritic filopodia formation, filopodia-spines transition, and dendritic spine maturation and maintenance. The aforementioned genes have been associated with neurological disorders, such as autism spectrum disorders (ASDs), mental retardation, learning difficulty, and frontotemporal dementia. We also summarize the corresponding disorders in this report
Improving acoustic monitoring of biodiversity using deep learning-based source separation algorithms
Passive acoustic monitoring of the environment has been suggested as an effective tool for investigating the dynamics of biodiversity across spatial and temporal scales. Recent development in automatic recorders has allowed environmental acoustic data to be collected in an unattended way for a long duration. However, one of the major challenges for acoustic monitoring is to identify sounds of target taxa in recordings which usually contain undesired signals from non-target sources. In addition, high variation in the characteristics of target sounds, co-occurrence of sounds from multiple target taxa, and a lack of reference data make it even more difficult to separate acoustic signals from different sources. To overcome this issue, we developed an unsupervised source separation algorithm based on a multi-layer (deep) non-negative matrix factorization (NMF). Using reference echolocation calls of 13 bat species, we evaluated the performance of the multi-layer NMF in separating species-specific calls. Results showed that the multi-layer NMF, especially when being pre-trained with reference calls, outperformed the conventional supervised single-layer NMF. We also evaluated the performance of the multi-layer NMF in identifying different types of bat calls in recordings collected in the field. We found comparable performance in call types identification between the multi-layer NMF and human observers. These results suggest that the proposed multi-layer NMF approach can be used to effectively separate acoustic signals of different taxa from long-duration field recordings in an unsupervised manner. The approach can thus improve the applicability of passive acoustic monitoring as a tool to investigate the responses of biodiversity to the changing environment
Welfare-Adjusted Life Years (WALY): A novel metric of animal welfare that combines the impacts of impaired welfare and abbreviated lifespan
Currently, separate measures are used to estimate the impact of animal diseases on mortality and animal welfare. This article introduces a novel metric, the Welfare-Adjusted Life Year (WALY), to estimate disease impact by combining welfare compromise and premature death components. Adapting the Disability-Adjusted Life Year approach used in human health audits, we propose WALY as the sum of a) the years lived with impaired welfare due to a particular cause and b) the years of life lost due to the premature death from the same cause. The years lived with impaired welfare are the product of the average duration of each welfare impediment, reflecting the actual condition that compromises animal welfare, the probability of an incident case developing and impaired welfare weights, representing the degree of impaired welfare. The years of life lost are calculated using the standard expected lifespan at the time of premature death. To demonstrate the concept, we estimated WALYs for 10 common canine diseases, namely mitral valve disease, dilated cardiomyopathy, chronic kidney disease, diabetes mellitus, atopic dermatitis, splenic haemangiosarcoma, appendicular osteosarcoma, cranial cruciate ligament disease, thoracolumbar intervertebral disc disease and cervical spondylomyelopathy. A survey of veterinarians (n = 61) was conducted to elicit impaired welfare weights for 35 welfare impediments. Paired comparison was the primary method to elicit weights, whereas visual analogue scale and time trade-off approaches rescaled these weights onto the desired scale, from 0 (the optimal welfare imaginable) to 1 (the worst welfare imaginable). WALYs for the 10 diseases were then estimated using the impaired welfare weights and published epidemiological data on disease impacts. Welfare impediment âamputation: one limbâ and ârespiratory distressâ had the lowest and highest impaired welfare weights at 0.134 and 0.796, rescaled with a visual analogue scale, and 0.117 and 0.857, rescaled with time trade-off. Among the 10 diseases, thoracolumbar intervertebral disc disease and atopic dermatitis had the smallest and greatest adverse impact on dogs with WALYs at 2.83 (95% UI: 1.54â3.94) and 9.73 (95% uncertainty interval [UI]: 7.17â11.8), respectively. This study developed the WALY metric and demonstrated that it summarises welfare compromise as perceived by humans and total impact of diseases in individual animals. The WALY can potentially be used for prioritisation of disease eradication and control programs, quantification of population welfare and longitudinal surveillance of animal welfare in companion animals and may possibly be extended to production animals
Welfare-adjusted life years (WALY) : a novel metric of animal welfare that combines the impacts of impaired welfare and abbreviated lifespan
Currently, separate measures are used to estimate the impact of animal diseases on mortality and animal welfare. This article introduces a novel metric, the Welfare-Adjusted Life Year (WALY), to estimate disease impact by combining welfare compromise and premature death components. Adapting the Disability-Adjusted Life Year approach used in human health audits, we propose WALY as the sum of a) the years lived with impaired welfare due to a particular cause and b) the years of life lost due to the premature death from the same cause. The years lived with impaired welfare are the product of the average duration of each welfare impediment, reflecting the actual condition that compromises animal welfare, the probability of an incident case developing and impaired welfare weights, representing the degree of impaired welfare. The years of life lost are calculated using the standard expected lifespan at the time of premature death. To demonstrate the concept, we estimated WALYs for 10 common canine diseases, namely mitral valve disease, dilated cardiomyopathy, chronic kidney disease, diabetes mellitus, atopic dermatitis, splenic haemangiosarcoma, appendicular osteosarcoma, cranial cruciate ligament disease, thoracolumbar intervertebral disc disease and cervical spondylomyelopathy. A survey of veterinarians (n = 61) was conducted to elicit impaired welfare weights for 35 welfare impediments. Paired comparison was the primary method to elicit weights, whereas visual analogue scale and time trade-off approaches rescaled these weights onto the desired scale, from 0 (the optimal welfare imaginable) to 1 (the worst welfare imaginable). WALYs for the 10 diseases were then estimated using the impaired welfare weights and published epidemiological data on disease impacts. Welfare impediment âamputation: one limbâ and ârespiratory distressâ had the lowest and highest impaired welfare weights at 0.134 and 0.796, rescaled with a visual analogue scale, and 0.117 and 0.857, rescaled with time trade-off. Among the 10 diseases, thoracolumbar intervertebral disc disease and atopic dermatitis had the smallest and greatest adverse impact on dogs with WALYs at 2.83 (95% UI: 1.54â3.94) and 9.73 (95% uncertainty interval [UI]: 7.17â11.8), respectively. This study developed the WALY metric and demonstrated that it summarises welfare compromise as perceived by humans and total impact of diseases in individual animals. The WALY can potentially be used for prioritisation of disease eradication and control programs, quantification of population welfare and longitudinal surveillance of animal welfare in companion animals and may possibly be extended to production animals
- âŚ