3,733 research outputs found

    A calibration experiment in a longitudinal survey with errors-in-variables

    Get PDF
    The National Resources Inventory (NRI) is a large-scale longitudinal survey conducted to assess trends and conditions of nonfederal land. A key NRI estimate is year-to-year change in acres of developed land, where developed land includes roads and urban areas. In 2003, a digital data collection procedure was implemented replacing a map overlay. Data from an NRI calibration experiment are used to estimate the relationship between data collected under the old and new protocols. A measurement error model is postulated for the relationship, where duplicate measurements are used to estimate one of the error variances. If any significant discrepancy is detected between new and old measures, some parameters that govern the algorithm under new protocol can be changed to alter the relationship. Parameters were calibrated so overall averages nearly match for the new and old protocols. Analyses on the data after initial parameter calibration suggest that the relationship is a line with an intercept of zero and a slope of one, therefore the parameters currently used are acceptable. The paper also provides models of the measurement error variances as functions of the proportion of developed land, which is essential for estimating the effect of measurement error for the whole NRI data

    Aberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model.

    Get PDF
    Down syndrome (DS) is a genetic disorder that causes cognitive impairment. The staggering effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic understanding of DS pathophysiology. We examined the neuron-astrocyte interplay in a fully recapitulated HSA21 trisomy cellular model differentiated from DS-patient-derived induced pluripotent stem cells (iPSCs). By combining calcium imaging with genetic approaches, we discovered the functional defects of DS astroglia and their effects on neuronal excitability. Compared with control isogenic astroglia, DS astroglia exhibited more-frequent spontaneous calcium fluctuations, which reduced the excitability of co-cultured neurons. Furthermore, suppressed neuronal activity could be rescued by abolishing astrocytic spontaneous calcium activity either chemically by blocking adenosine-mediated signaling or genetically by knockdown of inositol triphosphate (IP3) receptors or S100B, a calcium binding protein coded on HSA21. Our results suggest a mechanism by which DS alters the function of astrocytes, which subsequently disturbs neuronal excitability

    Laser writing of individual atomic defects in a crystal with near-unity yield

    Full text link
    Atomic defects in wide band gap materials show great promise for development of a new generation of quantum information technologies, but have been hampered by the inability to produce and engineer the defects in a controlled way. The nitrogen-vacancy (NV) color center in diamond is one of the foremost candidates, with single defects allowing optical addressing of electron spin and nuclear spin degrees of freedom with potential for applications in advanced sensing and computing. Here we demonstrate a method for the deterministic writing of individual NV centers at selected locations with high positioning accuracy using laser processing with online fluorescence feedback. This method provides a new tool for the fabrication of engineered materials and devices for quantum technologies and offers insight into the diffusion dynamics of point defects in solids.Comment: 16 pages, 8 figure

    A set of moment tensor potentials for zirconium with increasing complexity

    Full text link
    Machine learning force fields (MLFFs) are an increasingly popular choice for atomistic simulations due to their high fidelity and improvable nature. Here, we propose a hybrid small-cell approach that combines attributes of both offline and active learning to systematically expand a quantum mechanical (QM) database while constructing MLFFs with increasing model complexity. Our MLFFs employ the moment tensor potential formalism. During this process, we quantitatively assessed structural properties, elastic properties, dimer potential energies, melting temperatures, phase stability, point defect formation energies, point defect migration energies, free surface energies, and generalized stacking fault (GSF) energies of Zr as predicted by our MLFFs. Unsurprisingly, model complexity has a positive correlation with prediction accuracy. We also find that the MLFFs wee able to predict the properties of out-of-sample configurations without directly including these specific configurations in the training dataset. Additionally, we generated 100 MLFFs of high complexity (1513 parameters each) that reached different local optima during training. Their predictions cluster around the benchmark DFT values, but subtle physical features such as the location of local minima on the GSFE surface are washed out by statistical noise

    Herbicide-resistant weeds : from research and knowledge to future needs

    Get PDF
    Synthetic herbicides have been used globally to control weeds in major field crops. This has imposed a strong selection for any trait that enables plant populations to survive and reproduce in the presence of the herbicide. Herbicide resistance in weeds must be minimized because it is a major limiting factor to food security in global agriculture. This represents a huge challenge that will require great research efforts to develop control strategies as alternatives to the dominant and almost exclusive practice of weed control by herbicides. Weed scientists, plant ecologists and evolutionary biologists should join forces and work towards an improved and more integrated understanding of resistance across all scales. This approach will likely facilitate the design of innovative solutions to the global herbicide resistance challenge

    The Association Between Persistent White-Matter Abnormalities and Repeat Injury After Sport-Related Concussion

    Get PDF
    Objective: A recent systematic review determined that the physiological effects of concussion may persist beyond clinical recovery. Preclinical models suggest that ongoing physiological effects are accompanied by increased cerebral vulnerability that is associated with risk for subsequent, more severe injury. This study examined the association between signal alterations on diffusion tensor imaging following clinical recovery of sport-related concussion in athletes with and without a subsequent second concussion. Methods: Average mean diffusivity (MD) was calculated in a region of interest (ROI) in which concussed athletes (n = 82) showed significantly elevated MD acutely after injury (<48 h), at an asymptomatic time point, 7 days post-return to play (RTP), and 6 months relative to controls (n = 69). The relationship between MD in the identified ROI and likelihood of sustaining a subsequent concussion over a 1-year period was examined with a binary logistic regression (re-injured, yes/no). Results: Eleven of 82 concussed athletes (13.4%) sustained a second concussion within 12 months of initial injury. Mean MD at 7 days post-RTP was significantly higher in those athletes who went on to sustain a repeat concussion within 1 year of initial injury than those who did not (p = 0.048; d = 0.75). In this underpowered sample, the relationship between MD at 7 days post-RTP and likelihood of sustaining a secondary injury approached significance [χ2 (1) = 4.17, p = 0.057; B = 0.03, SE = 0.017; OR = 1.03, CI = 0.99, 1.07]. Conclusions: These preliminary findings raise the hypothesis that persistent signal abnormalities in diffusion imaging metrics at RTP following concussion may be predictive of a repeat concussion. This may reflect a window of cerebral vulnerability or increased susceptibility following concussion, though understanding the clinical significance of these findings requires further study

    Cadherin-4 plays a role in the development of zebrafish cranial ganglia and lateral line system

    Full text link
    We previously reported that cadherin-4 (also called R-cadherin) was expressed by the majority of the developing zebrafish cranial and lateral line ganglia. Cadherin-4 (Cdh4) function in the formation of these structures in zebrafish was studied using morpholino antisense technology. Differentiation of the cranial and lateral line ganglia and lateral line nerve and neuromasts of the cdh4 morphants was analyzed using multiple neural markers. We found that a subset of the morphant cranial and lateral line ganglia were disorganized, smaller, with reduced staining, and/or with altered shape compared to control embryos. Increased cell death in the morphant ganglia likely contributed to these defects. Moreover, cdh4 morphants had shorter lateral line nerves and a reduced number of neuromasts, which was likely caused by disrupted migration of the lateral line primordia. These results indicate that Cdh4 plays a role in the normal formation of the zebrafish lateral line system and a subset of the cranial ganglia. Developmental Dynamics 236:893–902, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55963/1/21085_ftp.pd
    • …
    corecore