14 research outputs found

    A distributed electricity energy trading strategy under energy shortage environment

    No full text
    This paper presents a power dispatch strategy combining the main grid and distributed generators based on aggregative game theory and the Cournot price mechanism. Such a dispatch strategy aims to increase the electricity under the power shortage situation. Under the proposed strategy, this paper designs a discrete-time algorithm fusing the estimation technique and the Digging method to solve the power shortage problem in a distributed way. The distributed algorithm can provide privacy protection and information safety and improve the power grid's extendibility. Moreover, the simulation results show that the proposed algorithm has favorable performance and effectiveness in the numerical example

    Characterization of Reduced Graphene Oxide (rGO)-Loaded SnO2 Nanocomposite and Applications in C2H2 Gas Detection

    No full text
    Acetylene (C2H2) gas sensors were developed by synthesizing a reduced graphene oxide (rGO)-loaded SnO2 hybrid nanocomposite via a facile two-step hydrothermal method. Morphological characterizations showed the formation of well-dispersed SnO2 nanoparticles loaded on the rGO sheets with excellent transparency and obvious fold boundary. Structural analysis revealed good agreement with the standard crystalline phases of SnO2 and rGO. Gas sensing characteristics of the synthesized materials were carried out in a temperature range of 100–300 °C with various concentrations of C2H2 gas. At 180 °C, the SnO2–rGO hybrid showed preferable detection of C2H2 with high sensor response (12.4 toward 50 ppm), fast response-recovery time (54 s and 23 s), limit of detection (LOD) of 1.3 ppm and good linearity, with good selectivity and long-term stability. Furthermore, the possible gas sensing mechanism of the SnO2–rGO nanocomposites for C2H2 gas were summarized and discussed in detail. Our work indicates that the addition of rGO would be effective in enhancing the sensing properties of metal oxide-based gas sensors for C2H2 and may make a contribution to the development of an excellent ppm-level gas sensor for on-line monitoring of dissolved C2H2 gas in transformer oil

    Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel.

    No full text
    Camellia oleifera Abel (C. oleifera) absorb nutrients from surrounding soils and its yield is highly influenced by these nutrients and by fertilizer application. Thus, the soil nutrients play a central role in C. oleifera production. This study investigated the effects of biogas slurry applications on soil nutrients and economic traits of C. oleifera fruits. Five different amounts of biogas slurry (0, 10, 20, 30, or 40 kg/plant/year, three applications per year) were used as fertilizer for C. oleifera plants in 2015 and 2016. The nutrients of rhizosphere soil and the economic traits, including fruit yield, seed rate, and oil yield of C. oleifera fruit, were measured each year. The results showed that fertilization with biogas slurry significantly increased soil organic matter, available nitrogen (N), phosphorus (P), and potassium (K) both in 2015 and 2016. Increases in soil available N, P, and K were maximal in the highest slurry application group followed by the second highest application group. The oil yield correlated with the content of soil available P in both 2015 and 2016, and with soil organic matter in 2015. Fertilization with biogas slurry decreased the saturated fatty acid content in fruit but had no effect on the unsaturated fatty acid content. In conclusion, fertilization with biogas slurry increased rhizosphere soil nutrients and fruit economic traits of C. oleifera and rates of at least30 kg/plant/year had the most positive effects. This study expands the knowledge of fertilization with biogas slurry in C. oleifera production

    Multi-Time Period Optimal Dispatch Strategy for Integrated Energy System Considering Renewable Energy Generation Accommodation

    No full text
    With the target of carbon peaking and carbon neutrality, renewable energy generation (REG) develops rapidly. The increasing penetration of REG brings along the problems of fluctuation in power flow and the possible abandonment of wind and photovoltaics (PV) generation. In this context, the so-called integrated energy system (IES) becomes a promising solution to the accommodation of REG thanks to energy storage systems and coupling devices inside. In this paper, the optimal operation model of an IES is first presented, with the schemes of green certificate trading and carbon emission right trading included to provide economic incentives for accommodating REG. Next, in order to address the problem of uncertainty in REG, the devices in the IES are divided into three types based on regulation flexibility, and a multi-time period optimal dispatching scheme is proposed, including day-ahead optimal scheduling, rolling optimal dispatching, and real-time control strategy. Finally, it is demonstrated by simulation results of a numerical example that the proposed method not only promotes the accommodation capability for REG but can also cope well with contingencies

    Multi-Time Period Optimal Dispatch Strategy for Integrated Energy System Considering Renewable Energy Generation Accommodation

    No full text
    With the target of carbon peaking and carbon neutrality, renewable energy generation (REG) develops rapidly. The increasing penetration of REG brings along the problems of fluctuation in power flow and the possible abandonment of wind and photovoltaics (PV) generation. In this context, the so-called integrated energy system (IES) becomes a promising solution to the accommodation of REG thanks to energy storage systems and coupling devices inside. In this paper, the optimal operation model of an IES is first presented, with the schemes of green certificate trading and carbon emission right trading included to provide economic incentives for accommodating REG. Next, in order to address the problem of uncertainty in REG, the devices in the IES are divided into three types based on regulation flexibility, and a multi-time period optimal dispatching scheme is proposed, including day-ahead optimal scheduling, rolling optimal dispatching, and real-time control strategy. Finally, it is demonstrated by simulation results of a numerical example that the proposed method not only promotes the accommodation capability for REG but can also cope well with contingencies

    HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway

    No full text
    Abstract Genes with cross-cancer aberrations are most likely to be functional genes or potential therapeutic targets. Here, we found a total of 137 genes were ectopically expressed in eight cancer types, of which Holliday junction recognition protein (HJURP) was significantly upregulated in prostate cancer (PCa). Moreover, patients with higher HJURP mRNA and protein levels had poorer outcomes, and the protein levels served as an independent prognosis factor for the overall survival of PCa patients. Functionally, ectopic HJURP expression promoted PCa cells proliferation in vitro and in vivo. Mechanistically, HJURP increased the ubiquitination of cyclin-dependent kinase inhibitor 1 (CDKN1A) via the GSK3β/JNK signaling pathway and decreased its stability. This study investigated the role of HJURP in PCa proliferation and may provide a novel prognostic and therapeutic target for PCa
    corecore