216 research outputs found
Aedesin : structure and antimicrobial activity against multidrug resistant bacterial strains
Multidrug resistance, which is acquired by both Gram-positive and Gram-negative bacteria, causes infections that are associated with significant morbidity and mortality in many clinical settings around the world. Because of the rapidly increasing incidence of pathogens that have become resistant to all or nearly all available antibiotics, there is a need for a new generation of antimicrobials with a broad therapeutic range for specific applications against infections. Aedesin is a cecropin-like anti-microbial peptide that was recently isolated from dengue virus-infected salivary glands of the Aedes aegypti mosquito. In the present study, we have refined the analysis of its structural characteristics and have determined its antimicrobial effects against a large panel of multidrug resistant bacterial strains, directly isolated from infected patients. Based the results from nuclear magnetic resonance spectroscopy analysis, Aedesin has a helix-bend-helix structure typical for a member of the family of α-helix anti-microbial peptides. Aedesin efficiently killed Gram-negative bacterial strains that display the most worrisome resistance mechanisms encountered in the clinic, including resistance to carbapenems, aminoglycosides, cephalosporins, 4th generation fluoroquinolones, folate inhibitors and monobactams. In contrast, Gram-positive strains were insensitive to the lytic effects of the peptide. The anti-bacterial activity of Aedesin was found to be salt-resistant, indicating that it is active under physiological conditions encountered in body fluids characterized by ionic salt concentrations. In conclusion, because of its strong lytic activity against multidrug resistant Gram-negative bacterial strains displaying all types of clinically relevant resistance mechanisms known today, Aedesin might be an interesting candidate for the development of alternative treatment for infections caused by these types of bacteria
Apoptosis of Fashigh CD4+ synovial T cells by borrelia-reactive Fas-ligand(high) gamma delta T cells in Lyme arthritis
The function of the minor subset of T lymphocytes bearing the gamma delta T cell antigen receptor is uncertain. Although some gamma delta T cells react to microbial products, responsiveness has only rarely been demonstrated toward a bacterial antigen from a naturally occurring human infection. Synovial fluid lymphocytes from patients with Lyme arthritis contain a large proportion of gamma delta cells that proliferate in response to the causative spirochete, Borrelia burgdorferi. Furthermore, synovial gamma delta T cell clones express elevated and sustained levels of the ligand for Fas (APO-1, CD95) compared to alpha beta T cells, and induce apoptosis of Fashigh CD4+ synovial lymphocytes. The findings suggest that gamma delta T cells contribute to defense in human infections, as well as manifest an immunoregulatory function at inflammatory sites by a Fas-dependent process
Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis)
Digitaria exilis, white fonio, is a minor but vital crop of West Africa that is valued for its resilience in hot, dry,
and low-fertility environments and for the exceptional quality of its grain for human nutrition. Its success is hindered,
however, by a low degree of plant breeding and improvement. Findings: We sequenced the fonio genome with long-read
SMRT-cell technology, yielding a ∼761 Mb assembly in 3,329 contigs (N50, 1.73 Mb; L50, 126). The assembly approaches a
high level of completion, with a BUSCO score of >99%. The fonio genome was found to be a tetraploid, with most of the
genome retained as homoeologous duplications that differ overall by ∼4.3%, neglecting indels. The 2 genomes within fonio were found to have begun their independent divergence ∼3.1 million years ago. The repeat content (>49%) is fairly standard
for a grass genome of this size, but the ratio of Gypsy to Copia long terminal repeat retrotransposons (∼6.7) was found to be
exceptionally high. Several genes related to future improvement of the crop were identified including shattering, plant
height, and grain size. Analysis of fonio population genetics, primarily in Mali, indicated that the crop has extensive genetic
diversity that is largely partitioned across a north-south gradient coinciding with the Sahel and Sudan grassland domains.
Conclusions: We provide a high-quality assembly, annotation, and diversity analysis for a vital African crop. The availability
of this information should empower future research into further domestication and improvement of fonio
Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q
Genome-wide association studies (GWAS) in several populations have demonstrated significant association of the IL23R gene with IBD (Crohn's disease (CD) and ulcerative colitis (UC)) and psoriasis, suggesting that perturbation of the IL-23 signaling pathway is relevant to the pathophysiology of these diseases. One particular variant, R381Q (rs11209026), confers strong protection against development of CD. We investigated the effects of this variant in primary T cells from healthy donors carrying IL23RR381 and IL23RQ381 haplotypes. Using a proprietary anti-IL23R antibody, ELISA, flow cytometry, phosphoflow and real-time RT-PCR methods, we examined IL23R expression and STAT3 phosphorylation and activation in response to IL-23. IL23RQ381 was associated with reduced STAT3 phosphorylation upon stimulation with IL-23 and decreased number of IL-23 responsive T-cells. We also observed slightly reduced levels of proinflammatory cytokine secretion in IL23RQ381 positive donors. Our study shows conclusively that IL23RQ381 is a loss-of-function allele, further strengthening the implication from GWAS results that the IL-23 pathway is pathogenic in human disease. This data provides an explanation for the protective role of R381Q in CD and may lead to the development of improved therapeutics for autoimmune disorders like CD
Early Production of IL-22 but Not IL-17 by Peripheral Blood Mononuclear Cells Exposed to live Borrelia burgdorferi: The Role of Monocytes and Interleukin-1
If insufficiently treated, Lyme borreliosis can evolve into an inflammatory disorder affecting skin, joints, and the CNS. Early innate immunity may determine host responses targeting infection. Thus, we sought to characterize the immediate cytokine storm associated with exposure of PBMC to moderate levels of live Borrelia burgdorferi. Since Th17 cytokines are connected to host defense against extracellular bacteria, we focused on interleukin (IL)-17 and IL-22. Here, we report that, despite induction of inflammatory cytokines including IL-23, IL-17 remained barely detectable in response to B. burgdorferi. In contrast, T cell-dependent expression of IL-22 became evident within 10 h of exposure to the spirochetes. This dichotomy was unrelated to interferon-γ but to a large part dependent on caspase-1 and IL-1 bioactivity derived from monocytes. In fact, IL-1β as a single stimulus induced IL-22 but not IL-17. Neutrophils display antibacterial activity against B. burgdorferi, particularly when opsonized by antibodies. Since neutrophilic inflammation, indicative of IL-17 bioactivity, is scarcely observed in Erythema migrans, a manifestation of skin inflammation after infection, protective and antibacterial properties of IL-22 may close this gap and serve essential functions in the initial phase of spirochete infection
- …