13 research outputs found

    The mRNA cap-binding protein eIF4E in post-transcriptional gene expression

    Get PDF
    Eukaryotic initiation factor 4E (eIF4E) has central roles in the control of several aspects of post-transcriptional gene expression and thereby affects developmental processes. It is also implicated in human diseases. This review explores the relationship between structural, biochemical and biophysical aspects of eIF4E and its function in vivo, including both long-established roles in translation and newly emerging ones in nuclear export and mRNA decay pathways

    Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G

    No full text
    The eukaryotic cap-binding complex eIF4F is an essential component of the translational machinery. Recognition of the mRNA cap structure through its subunit eIF4E is a requirement for the recruitment of other translation initiation factors to the mRNA 5'-end and thereby for the attachment of the 40 S ribosomal subunit. In this study, we have investigated the mechanistic basis of the observation that eIF4E binding to the cap is enhanced in the presence of the large eIF4F subunit, eIF4G. We show that eIF4E requires access to both the mRNA 5'-cap and eIF4G to form stable complexes with short RNAs. This stabilization can be achieved using fragments of eIF4G that contain the eIF4E binding site but not the RNA recognition motifs. Full-length eIF4G is shown to induce increased eIF4E binding to cap analogues that do not contain an RNA body. Both results show that interaction of eIF4G with the mRNA is not necessary to enhance cap binding by eIF4E. Moreover, we show that the effect of binding of full-length eIF4G on the cap affinity of eIF4E can be further modulated through binding of Pab1 to eIF4G. These data are consistent with a model in which heterotropic cooperativity underlies eIF4F function

    A Quantitative Molecular Model for Modulation of Mammalian Translation by the eIF4E-binding Protein 1

    No full text
    Translation initiation is a key point of regulation in eukaryotic gene expression. 4E-binding proteins (4E-BPs) inhibit initiation by blocking the association of eIF4E with eIF4G, two integral components of the mRNA cap-binding complex. Phosphorylation of 4E-BP1 reduces its ability to bind to eIF4E and thereby to compete with eIF4G. A novel combination of biophysical and biochemical tools was used to measure the impact of phosphorylation and acidic side chain substitution at each potentially modulatory site in 4E-BP1. For each individual site, we have analyzed the effects of modification on eIF4E binding using affinity chromatography and surface plasmon resonance analysis, and on the regulatory function of the 4E-BP1 protein using a yeast in vivo model system and a mammalian in vitro translation assay. We find that modifications at the two sites immediately flanking the eIF4E-binding domain, Thr46 and Ser65, consistently have the most significant effects, and that phosphorylation of Ser65 causes the greatest reduction in binding affinity. These results establish a quantitative framework that should contribute to understanding of the molecular interactions underlying 4E-BP1-mediated translational regulation. <br/
    corecore