692 research outputs found
Interferometer angle-of-arrival determination using precalculated phases
Published online 1 SEP 2017A method has been developed to determine the angle of arrival (AoA) of incident radiation using precomputed lookup tables. The phase difference between two receiving antennas can be used to infer AoA as measured from the pair baseline, but there will be more than one possible solution for antenna spacings greater than or equal to half a wavelength. Larger spacings are preferable to minimize mutual coupling of elements in the receive array and to decrease the relative uncertainty in measured phase difference. We present a solution that uses all unique antenna pairs to determine probabilities for all possible azimuth and zenith values. Prior to analysis, the expected phase differences for all AoAs are calculated for each antenna pair. For a received signal, histograms of possible AoAs for each antenna pair phase difference are extracted and added to produce a two‐dimensional probability density array that will maximize at the true value of the AoA. A benefit of this method is that all possible antenna pairs are utilized rather than the restriction to specific pairs along baselines used by some interferometer algorithms. Numerical simulations indicate that performance of the suggested algorithm exceeds that of existing methods, with the benefit of additional flexibility in antenna placement. Meteor radar data have been used to test this method against existing methods, with excellent agreement between the two approaches. This method of AoA determination will allow the construction of low‐cost interferometric direction finding arrays with different layouts, including construction of difficult terrain and three‐dimensional antenna arrangements. Plain Language Summary A method has been developed to determine the direction that radio waves are coming from when detected by an arrangement of antennas. The method looks at each of the unique pairs of antennas and compares the received signal with what would be expected for all possible directions. The results from all of the pairs of antennas are added to find the true direction that the radio waves are coming from. This improves the accuracy of simple radars and allows different types of antenna patterns to be used. Computer simulations show that the suggested method is very effective. Tests of data from a real radar also show excellent agreement between the new method and existing techniques.J. P. Younger and I. M. Rei
65 years of meteor radar research at Adelaide
Iain M. Reid, and Joel Younge
Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site
We consider 5 years of spectrometer measurements of OH(6–2) and O2(0–1) airglow emission intensities and temperatures made near Adelaide, Australia (35° S, 138° E), between September 2001 and August 2006 and compare them with measurements of the same parameters from at the same site using an airglow imager, with the intensities of the OH(8–3) and O(1S) emissions made with a filter photometer, and with 2 years of Aura MLS (Microwave Limb Sounder) v3.3 temperatures and 4.5 years of TIMED SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Sounding of the Atmosphere using Broadband Emission Radiometry) v2.0 temperatures for the same site. We also consider whether we can recover the actual emission heights from the intercomparison of the ground-based and satellite observations. We find a significant improvement in the correlation between the spectrometer OH and SABER temperatures by interpolating the latter to constant density surfaces determined using a meteor radar.Iain M. Reid, Andrew J. Spargo, Jonathan M. Woithe, Andrew R. Klekociuk, Joel P. Younger and Gulamabas G. Sivje
Electron Impact Excitation Cross Sections for Hydrogen-Like Ions
We present cross sections for electron-impact-induced transitions n --> n' in
hydrogen-like ions C 5+, Ne 9+, Al 12+, and Ar 17+. The cross sections are
computed by Coulomb-Born with exchange and normalization (CBE) method for all
transitions with n < n' < 7 and by convergent close-coupling (CCC) method for
transitions with n 2s and 1s
--> 2p are presented as well. The CCC and CBE cross sections agree to better
than 10% with each other and with earlier close-coupling results (available for
transition 1 --> 2 only). Analytical expression for n --> n' cross sections and
semiempirical formulae are discussed.Comment: RevTeX, 5 pages, 13 PostScript figures, submitted to Phys. Rev.
AzTEC Millimetre Survey of the COSMOS Field - II. Source Count Overdensity and Correlations with Large-Scale Structure
We report an over-density of bright sub-millimetre galaxies (SMGs) in the
0.15 sq. deg. AzTEC/COSMOS survey and a spatial correlation between the SMGs
and the optical-IR galaxy density at z <~ 1.1. This portion of the COSMOS field
shows a ~ 3-sigma over-density of robust SMG detections when compared to a
background, or "blankfield", population model that is consistent with SMG
surveys of fields with no extragalactic bias. The SMG over-density is most
significant in the number of very bright detections (14 sources with measured
fluxes S(1.1mm) > 6 mJy), which is entirely incompatible with sample variance
within our adopted blank-field number densities and infers an over-density
significance of >> 4. We find that the over-density and spatial correlation to
optical-IR galaxy density are most consistent with lensing of a background SMG
population by foreground mass structures along the line of sight, rather than
physical association of the SMGs with the z <~ 1.1 galaxies/clusters. The SMG
positions are only weakly correlated with weak-lensing maps, suggesting that
the dominant sources of correlation are individual galaxies and the more
tenuous structures in the region and not the massive and compact clusters.
These results highlight the important roles cosmic variance and large-scale
structure can play in the study of SMGs.Comment: 12 pages, 11 figures, 2 tables, accepted for publication in MNRA
Electron impact excitation cross sections for allowed transitions in atoms
We present a semiempirical Gaunt factor for widely used Van Regemorter
formula [Astrophys. J. 136, 906 (1962)] for the case of allowed transitions in
atoms with the LS coupling scheme. Cross sections calculated using this Gaunt
factor agree with measured cross sections to within the experimental error.Comment: RevTeX, 3 pages, 10 PS figures, 2 PS tables, submitted to Phys. Rev.
Quest for COSMOS Submillimeter Galaxy Counterparts using CARMA and VLA: Identifying Three High-redshift Starburst Galaxies
We report on interferometric observations at 1.3 mm at 2"-3" resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F_(1mm) > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ~10"-30", resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (~2") mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ≳ 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9^(+0.9)_(–0.5), and ~4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ≳ 1000 M_☉ yr^(–1) and IR luminosities of ~10^(13) L_☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ~ 2 and today's passive galaxies
Stark Broadening of the B III 2s-2p Lines
We present a quantum-mechanical calculation of Stark line widths from
electron-ion collisions for the , lambda = 2066 and 2067
A, resonance transitions in B III. The results confirm the previous
quantum-mechanical R-matrix calculations but contradict recent measurements and
semi-classical and some semi-empirical calculations. The differences between
the calculations can be attributed to the dominance of small L partial waves in
the electron-atom scattering, while the large Stark widths inferred from the
measurements would be substantially reduced if allowance is made for
hydrodynamic turbulence from high Reynolds number flows and the associated
Doppler broadening.Comment: 21 pages, 4 figures; to be published in Phys. Rev.
AzTEC millimeter survey of the COSMOS field - III. Source catalog over 0.72 sq. deg. and plausible boosting by large-scale structure
We present a 0.72 sq. deg. contiguous 1.1mm survey in the central area of the
COSMOS field carried out to a 1sigma ~ 1.26 mJy/beam depth with the AzTEC
camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE). We
have uncovered 189 candidate sources at a signal-to-noise ratio S/N >= 3.5, out
of which 129, with S/N >= 4, can be considered to have little chance of being
spurious (< 2 per cent). We present the number counts derived with this survey,
which show a significant excess of sources when compared to the number counts
derived from the ~0.5 sq. deg. area sampled at similar depths in the Scuba HAlf
Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are,
however, consistent with those derived from fields that were considered too
small to characterize the overall blank-field population. We identify
differences to be more significant in the S > 5 mJy regime, and demonstrate
that these excesses in number counts are related to the areas where galaxies at
redshifts z < 1.1 are more densely clustered. The positions of optical-IR
galaxies in the redshift interval 0.6 < z < 0.75 are the ones that show the
strongest correlation with the positions of the 1.1mm bright population (S > 5
mJy), a result which does not depend exclusively on the presence of rich
clusters within the survey sampled area. The most likely explanation for the
observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group
lensing at moderate amplification levels, that increases in amplitude as one
samples larger and larger flux densities. This effect should also be detectable
in other high redshift populations.Comment: 21 pages, 17 figures, accepted for publication in MNRA
The effects of deionization processes on meteor radar diffusion coefficients below 90 km
The decay times of VHF radar echoes from underdense meteor trails are reduced in the lower portions of the meteor region. This is a result of plasma neutralization initiated by the attachment of positive trail ions to neutral atmospheric molecules. Decreased echo decay times cause meteor radars to produce erroneously high estimates of the ambipolar diffusion coefficient at heights below 90 km, which affects temperature estimation techniques. Comparisons between colocated radars and satellite observations show that meteor radar estimates of diffusion coefficients are not consistent with estimates from the Aura Microwave Limb Sounder satellite instrument and that colocated radars operating at different frequencies estimate different values of the ambipolar diffusion coefficient for simultaneous detections of the same meteors. Loss of free electrons from meteor trails due to attachment to aerosols and chemical processes were numerically simulated and compared with observations to determine the specific mechanism responsible for low-altitude meteor trail plasma neutralization. It is shown that three-body attachment of positive metal ions significantly reduces meteor radar echo decay times at low altitudes compared to the case of diffusion only that atmospheric ozone plays little part in the evolution of low-altitude underdense meteor trails and that the effect of three-body attachment begins to exceed diffusion in echo decay times at a constant density surface.J. P. Younger, C. S. Lee, I. M. Reid, R. A. Vincent, Y. H. Kim, and D. J. Murph
- …