777 research outputs found

    Potent PPARα Activator Derived from Tomato Juice, 13-oxo-9,11-Octadecadienoic Acid, Decreases Plasma and Hepatic Triglyceride in Obese Diabetic Mice

    Get PDF
    Dyslipidemia is a major risk factor for development of several obesity-related diseases. The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that regulates energy metabolism. Previously, we reported that 9-oxo-10,12-octadecadienoic acid (9-oxo-ODA) is presented in fresh tomato fruits and acts as a PPARα agonist. In addition to 9-oxo-ODA, we developed that 13-oxo-9,11-octadecadienoic acid (13-oxo-ODA), which is an isomer of 9-oxo-ODA, is present only in tomato juice. In this study, we explored the possibility that 13-oxo-ODA acts as a PPARα agonist in vitro and whether its effect ameliorates dyslipidemia and hepatic steatosis in vivo. In vitro luciferase assay experiments revealed that 13-oxo-ODA significantly induced PPARα activation; moreover, the luciferase activity of 13-oxo-ODA was stronger than that of 9-oxo-ODA and conjugated linoleic acid (CLA), which is a precursor of 13-oxo-ODA and is well-known as a potent PPARα activator. In addition to in vitro experiment, treatment with 13-oxo-ODA decreased the levels of plasma and hepatic triglycerides in obese KK-Ay mice fed a high-fat diet. In conclusion, our findings indicate that 13-oxo-ODA act as a potent PPARα agonist, suggesting a possibility to improve obesity-induced dyslipidemia and hepatic steatosis

    Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study. Here, we develop a feeder-free, long-term, three-dimensional (3D) culture technique for hAT2 cells derived from primary human lung tissue and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and proinflammatory genes in infected hAT2 cells, indicating a robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2 and the application of defined 3D hAT2 cultures as models for respiratory diseases

    Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets

    Get PDF
    Few studies have used a longitudinal approach to describe the immune response to SARS-CoV-2 infection. Here, we perform single-cell RNA sequencing of bronchoalveolar lavage fluid cells longitudinally obtained from SARS-CoV-2-infected ferrets. Landscape analysis of the lung immune microenvironment shows distinct changes in cell proportions and characteristics compared to uninfected control, at 2 and 5 days post-infection (dpi). Macrophages are classified into 10 distinct subpopulations with transcriptome changes among monocyte-derived infiltrating macrophages and differentiated M1/M2 macrophages, notably at 2 dpi. Moreover, trajectory analysis reveals gene expression changes from monocyte-derived infiltrating macrophages toward M1 or M2 macrophages and identifies a macrophage subpopulation that has rapidly undergone SARS-CoV-2-mediated activation of inflammatory responses. Finally, we find that M1 or M2 macrophages show distinct patterns of gene modules downregulated by immune-modulatory drugs. Overall, these results elucidate fundamental aspects of the immune response dynamics provoked by SARS-CoV-2 infection. A longitudinal analysis of SARS-CoV-2 infection in humans is challenging. Here the authors show a single cell RNA-sequencing analysis of BAL fluid cells from ferrets and characterise the time dependent recruitment of macrophage subsets to the lungs in response to SARS-CoV-2 infection

    Prevalence of Otolaryngologic Diseases in South Korea: Data from the Korea National Health and Nutrition Examination Survey 2008

    Get PDF
    Objectives. The aims of this study were to evaluate the prevalence of otolaryngologic diseases in Korea. Methods. We obtained data from the 2008 Korea National Health and Nutrition Examination Surveys (KNHANES), which were cross-sectional surveys of the civilian, non-institutionalized population of South Korea (n=4,930). A field survey team that included an otolaryngologist, nurses, and interviewers moved with a mobile examination unit and performed otolaryngologic interviews and physical examinations. Results. The prevalence of subjective hearing loss, tinnitus, preauricular fistua, tympanic membrane perforation, and cholesteatoma were 11.97%, 20.27%, 2.08%, 1.60%, and 1.18%, respectively. Dizziness and vestibular dysfunction were common among Korean adults, since 23.33% of the participants reported symptoms of dizziness or imbalance, and the prevalence of vestibular dysfunction was 3.86%. The prevalence of nasal diseases was relatively high, as the prevalence of allergic rhinitis, chronic rhinosinusitis, and a deviated nasal septum were 28.01%, 7.12%, and 42.94%, respectively. Subjective dysphonia was found in 6.60% of the participants, and the prevalence of subjective dysphonia increased with age. Conclusion. This is the first nation-wide epidemiologic study to assess the prevalence of otolaryngologic diseases by both the Korean Otolaryngologic Society and the Ministry of Health and Welfare. Considering the high prevalence of otolaryngologic diseases in Korea, the results call for additional studies to better prevent and manage otolaryngologic diseases

    Interplay between chronic inflammation and clonal haematopoiesis of indeterminate potential in Behçets disease

    Get PDF
    Background Clonal haematopoiesis of indeterminate potential (CHIP) is a predisposition to haematological malignancy whose relationship with chronic inflammatory diseases, such as cardiovascular diseases, has been highlighted. Here, we aimed to investigate the CHIP emergence rate and its association with inflammatory markers in Behçets disease (BD). Methods We performed targeted next-generation sequencing to detect the presence of CHIP using peripheral blood cells from 117 BD patients and 5004 healthy controls between March 2009 and September 2021 and analysed the association between CHIP and inflammatory markers. Results CHIP was detected in 13.9% of patients in the control group and 11.1% of patients in the BD group, indicating no significant intergroup difference. Among the BD patients of our cohort, five variants (DNMT3A, TET2, ASXL1, STAG2, and IDH2) were detected. DNMT3A mutations were the most common, followed by TET2 mutations. CHIP carriers with BD had a higher serum platelet count, erythrocyte sedimentation rate, and C-reactive protein level; older age; and lower serum albumin level at diagnosis than non-CHIP carriers with BD. However, the significant association between inflammatory markers and CHIP disappeared after the adjustment for various variables, including age. Moreover, CHIP was not an independent risk factor for poor clinical outcomes in patients with BD. Conclusions Although BD patients did not have higher CHIP emergence rates than the general population, older age and degree of inflammation in BD were associated with CHIP emergence
    corecore