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Single-cell transcriptome of bronchoalveolar lavage
fluid reveals sequential change of macrophages
during SARS-CoV-2 infection in ferrets
Jeong Seok Lee 1,8✉, June-Young Koh 2,8, Kijong Yi 2,8, Young-Il Kim 3,8, Su-Jin Park3,4, Eun-Ha Kim3,

Se-Mi Kim3, Sung Ho Park5, Young Seok Ju 1,2,6, Young Ki Choi 3,7✉ & Su-Hyung Park 2,6✉

Few studies have used a longitudinal approach to describe the immune response to SARS-

CoV-2 infection. Here, we perform single-cell RNA sequencing of bronchoalveolar lavage

fluid cells longitudinally obtained from SARS-CoV-2-infected ferrets. Landscape analysis of

the lung immune microenvironment shows distinct changes in cell proportions and char-

acteristics compared to uninfected control, at 2 and 5 days post-infection (dpi). Macrophages

are classified into 10 distinct subpopulations with transcriptome changes among monocyte-

derived infiltrating macrophages and differentiated M1/M2 macrophages, notably at 2 dpi.

Moreover, trajectory analysis reveals gene expression changes from monocyte-derived

infiltrating macrophages toward M1 or M2 macrophages and identifies a macrophage sub-

population that has rapidly undergone SARS-CoV-2-mediated activation of inflammatory

responses. Finally, we find that M1 or M2 macrophages show distinct patterns of gene

modules downregulated by immune-modulatory drugs. Overall, these results elucidate fun-

damental aspects of the immune response dynamics provoked by SARS-CoV-2 infection.
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During the current coronavirus disease-19 (COVID-19)
pandemic1, cross-sectional research has rapidly broa-
dened our understanding of the immune response to

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Immune landscape studies have revealed the pathogenesis of
severe COVID-19 with a hyper-inflammatory response2–4, and
the innate, humoral, and T-cell response of COVID-19 patients
have been extensively characterized5–7. Currently, ongoing stu-
dies are examining the mechanisms of therapeutic modalities,
including anti-viral and anti-inflammatory agents, with accom-
panying clinical trials8–11. However, due to the intrinsic limita-
tions of observational studies of human subjects, it is rare to
obtain a longitudinal description of the immune response from
the initial stage to the resolution of SARS-CoV-2 infection.

In recent studies, single-cell RNA sequencing (scRNA-seq) of
bronchoalveolar lavage (BAL) fluid from patients with COVID-
19 has provided valuable information on the microenvironment
of immune responses to SARS-CoV-212–14. Intriguingly,
increased levels of a macrophage subtype originated from circu-
lating monocytes were observed during the inflammatory phase
of COVID-1912. In addition, we recently demonstrated that
peripheral monocytes from severe COVID-19 patients were
highly activated, showing strong interferon-mediated inflamma-
tory responses4. These findings suggest that both monocytes and
macrophages are major cell populations of interest in COVID-19
pathogenesis and patients’ anti-viral response. However, most
currently available transcriptomic analyses of immune cells are
from cross-sectional studies and, importantly, cannot compare
infected status with uninfected status due to the lack of data
obtained prior to the SARS-CoV-2 infection. Moreover, BAL
invasiveness hinders the acquisition of sequential specimens from
critical patients during SARS-CoV-2 infection. These limitations
can be overcome by analyzing animal models for the infection
with SARS-CoV-2.

The ferret (Mustela putorius furo) is widely used as an animal
model for investigations of respiratory virus pathogenesis15,16.
Since ferrets’ natural susceptibility to the influenza virus was
discovered in 1933, these animals have been used to recapitulate
the course of several human respiratory viral diseases, including
parainfluenza virus, respiratory syncytial virus, and SARS-CoV17.
Moreover, their histoanatomical features—including the ratio
between the upper and lower respiratory tract lengths, airway
glandular density, and terminal bronchiole structure—provide
optimal conditions for mimicking human respiratory infection17.
We recently reported that a ferret model can reproduce a com-
mon natural course of COVID-19 in humans, showing effective
infection and rapid transmission18. SARS-CoV-2-infected ferrets
initially exhibit body temperature elevation and weight loss with
viral shedding. In addition, peak viral titer is observed during
2–4 days post-infection (dpi), and after then, the resolution phase
which is characterized by body temperature normalization and
decrease of viral titer is continued up to 10 days.

Here, we perform scRNA-seq of sequential BAL fluid samples,
which is useful for investigating the immunological changes in the
lung, from SARS-CoV-2-infected ferrets, compared to the nega-
tive control, at 2 days post-infection (dpi) (early stage of SARS-
CoV-2 infection with peak viral titer), and 5 dpi (resolution phase
with histopathology). Landscape analysis of the ferret lung
immune microenvironment reveals dynamic changes in the
proportions and characteristics of immune cells over this time.
Specifically, we delineate the macrophage population into ten
distinct subpopulations based on unique gene expression patterns
and describe their chronological transcriptome changes. Intrigu-
ingly, rather than tissue-resident alveolar macrophage popula-
tions, we find that infiltrating macrophages differentiate into M1
or M2 macrophages after SARS-CoV-2 infection. Moreover, the

different spectrums of M1 or M2 macrophages show distinct
patterns of gene modules down-regulated by immune-
modulatory drugs.

Results
Single-cell transcriptomes of BAL fluid cells from SARS-CoV-
2-infected ferrets. Ferrets were inoculated intranasally with SARS-
CoV-2, using a previously described strain isolated from a COVID-
19 patient in South Korea18. BAL fluid cells and contralateral lung
tissue samples were collected by sacrificing infected ferrets at three
different time-points: before SARS-CoV-2 infection (uninfected
control, n= 3), 2 dpi (n= 3), and 5 dpi (n= 4) (Fig. 1a).

Histopathological analysis and viral shedding clearly indicated
SARS-CoV-2 infection (Fig. 1a, b). The infectious viruses were
detected in lung tissue at 2 dpi (mean 2.3 log10 TCID50/g) and 5
dpi (mean 1.6 log10 TCID50/g). Viral RNA copy number in the
BAL fluid also peaked at 2 dpi (Supplementary Fig. 1).
Histopathological examinations revealed a pattern of acute
pneumonia, characterized by more prominent immune cell
infiltration in the alveolar wall and bronchial epithelium at 5
dpi compared to at 2 dpi or in controls, which is consistent with
our recent study18. Bronchitis was also found near the intact
bronchial lining cells at 2 dpi (red circle, Supplementary Fig. 2).
Macrophages and neutrophils were the most common infiltrated
immune cells, as determined by their typical morphological
phenotypes. Semi-quantitative grading confirmed these changes
in all the individual histological findings from the ferret subjects
(Fig. 1b). Therefore, we categorized the 2 dpi specimens as the
early stage of SARS-CoV-2 infection with peak viral titer, while 5
dpi specimens may represent as resolution phase with decreasing
viral titer and evident histopathological changes.

Using the 10× Genomics platform, we performed scRNA-seq of
BAL fluid cells from 10 ferrets, analyzing a total of 59,138 cells after
filtering dead cells. We detected a mean of 8760 UMIs and an average
of 2158 genes per cell. By analyzing 59,138 cells with a uniform
manifold approximation and projection (UMAP) algorithm based on
variable genes with the Seurat package19, we identified 28 different
clusters (Supplementary Fig. 3a), which were assigned to 14 different
cell types expressing representative marker genes (Fig. 1c, Supple-
mentary Fig. 3b–d, Supplementary Data 1). We excluded two clusters
with doublet and red blood cells, and thus focused on the following
12 clusters for downstream analysis: dendritic cells, macrophages,
granulocytes, mast cells, natural killer (NK) cells, γδ-T cells, CD8+

T cells, CD4+ T cells, proliferating T cells, B cells, plasma cells, and
epithelial cells (Fig. 1d). These clusters and annotated cell types were
unbiased according to experimental batches of scRNA-seq (Supple-
mentary Fig. 3e). Although the SARS-CoV-2 RNA sequence was
rarely detected, they were contained by the macrophage and epithelial
cell clusters (Supplementary Fig. 3f).

To analyze the time-course and dynamic changes of immune
responses to SARS-CoV-2, we compared the relative proportions
of each cell type in control, 2 and 5 dpi. Analyzing the pattern of
proportion changes revealed that the macrophage population
comprised the majority of BAL fluid cells over 60% (Fig. 1e). The
pattern of each cell type proportion was not evidently changed
regardless of time point (Fig. 1e).

Quantitative and qualitative changes in NK cells and CD8+

T cells. As we aimed to investigate immunological changes during
the early stage of SARS-CoV-2 infection, we first analyzed NK
cells, the representative innate cytotoxic lymphocytes in anti-viral
response. Among NK cells, five subclusters were identified from
UMAP (Fig. 2a; Supplementary Data 2). With regards to the
proportions of each NK cluster, NK cluster 0 was decreased after
SARS-CoV-2 infection, NK cluster 1 was increased at 2 dpi but
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decreased at 5 dpi, and NK clusters 2 and 3 were reciprocally
changed (Fig. 2b, Supplementary Fig. 4a). To characterize the
activated status of each NK cluster, we performed gene set
enrichment analysis (GSEA) using interferon (IFN)-α or IFN-γ
responsive signatures. NK clusters 0 and 1 featured prominent
responses to interferon IFN-α or IFN-γ (Supplementary Fig. 4b).
Indeed, NK cluster 1 showed predominant expression of IFN-
stimulated genes including STAT1, OAS1, and ISG15 (Fig. 2c).

In addition, genes of cytotoxic molecules including GZMB,
GZMK, and PRF1 were also highly expressed (Fig. 2c)—indicat-
ing that NK cluster 1 was IFN-stimulated and activated NK cells.
Collectively, the NK cell cluster exhibited activated subclusters
with IFN-stimulated and cytotoxic features, which underwent
longitudinal changes peaked at 2 dpi.

In addition, we analyzed CD8+ T cells, another cytotoxic
lymphocyte population, and identified four subclusters from

Fig. 1 Single-cell transcriptomes of BAL fluid cells from SARS-CoV-2-infected ferrets. a Summary of experimental conditions with viral titers in the
negative control, at 2 days post-infection (dpi) and 5 dpi. b Histopathologic scoring of the lung tissues of negative control ferrets, and SARS-CoV-2-infected
ferrets on 2 and 5 dpi. The scale bar indicates 20 μm. c Fourteen different clusters and their specific marker gene expression levels, where brightness
indicates log-normalized average expression, and circle size indicates percent expressed. d UMAP of 59,138 cells from the bronchoalveolar lavage (BAL)
fluid of 10 ferrets, colored to show annotated cell types. e The proportion of each cell type at uninfected control (n= 3), 2 dpi (n= 3), and 5 dpi (n= 4). NK
natural killer, RBC red blood cell, TCID50 median tissue culture infectious dose. The height of bars indicates mean and error bars indicate standard
deviation. Source data are provided as a Source Data file.
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UMAP (Fig. 2d; Supplementary Data 3). The proportion of CD8+

cluster 2 tended to decrease at 2 dpi and to increase at 5 dpi, while
the proportion of CD8+ cluster 0 reciprocally changed (Supple-
mentary Fig. 4c). When we characterize each CD8+ cluster,
CD8+ clusters 2 and 3 exhibited higher expression levels of CD69

and ITGAE, and lower expression of S1PR1, reflecting tissue-
resident features (Fig. 2e). CD8+ cluster 2 showed higher
expressions of CD69 and ITGAE, as well as high expression of
IFNG. These findings were consistent with human CD8+ resident
memory T (TRM) cells, which rapidly induce IFN-γ production
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using preformed mRNA20. Similar to NK cluster 1, CD8+ cluster
0 exhibited prominent expression of IFN-stimulated genes
(including OAS1 and ISG15) and the genes of cytotoxic molecules
(including GZMB and PRF1) (Fig. 2f). These findings indicated
that CD8+ cluster 0 comprised activated CD8+ cells; however,
these cells expressed scarce amounts of IFNG. CD8+ cluster
0 showed different distributions at 2 dpi (red circle) and 5 dpi
(blue circle) (Fig. 2g), which was reflected by higher IFN-
stimulated signatures, including OAS1 and ISG15 at 2 dpi
(Fig. 2h). Considering that antigen-specific T cell response
requires a few weeks to take place after infection, those activation
patterns at 2 dpi could be led by bystander activation of tissue-
resident T cells.

Sequential changes in macrophage populations during SARS-
CoV-2 infection. We next studied macrophage-specific features
that dynamically changed during SARS-CoV-2 infection, since
macrophages consistently comprised the majority of cells
regardless of time point (Fig. 1e). To this end, we performed a
sub-clustering analysis of the macrophage cluster depicted in
Fig. 1d. To annotate cell types, we analyzed 40,241 cells using the
UMAP algorithm based on variable genes with the Seurat
package19 and identified 17 different sub-clusters (Supplementary
Fig. 5a). Based on signature genes, we selected the following ten
macrophage clusters with respective biological significance for
downstream analysis: FABP4+DDX60− macrophages (resting
tissue macrophages), APOE+ macrophages, FABP4+DDX60+

macrophages (activated tissue macrophages), SPP1hiCHIT1int M2
(potentially profibrogenic), DDX60+CHIT1hi macrophages
(monocyte-derived infiltrating), CSF3R+IL1B+ISG15− (weakly
activated M1), CSF3R+IL1B+ISG15+ (highly activated M1),
proliferating macrophages, engulfing macrophages, and
unclassified cells (Fig. 3a, b, and Supplementary Fig. 5b). Sup-
plementary Data 4 lists the specific markers used to define each
macrophage sub-cluster. Supplementary Fig. 5c displays the
normalized expression levels of representative marker genes of
each cluster.

The proportion of each lung macrophage subtype underwent
distinctive changes. The sub-population of FABP4+DDX60−

macrophages (resting tissue macrophages) was dominant in
control samples but was drastically decreased at 2 dpi, and
partially recovered at 5 dpi (Fig. 3c, Supplementary Fig. 5b). At
2 dpi, we observed increased proportions of FABP4+DDX60+

macrophages, CSF3R+IL1B+ISG15−, CSF3R+IL1B+ISG15+,
and DDX60+CHIT1hi macrophages. At 5 dpi, the sub-
populations of FABP4+DDX60− macrophages, APOE+ macro-
phages, FABP4+DDX60+, and SPP1hiCHIT1int M2 constituted
major proportions of the samples, while the proportion of M1
macrophages was lower than at 2 dpi. Dynamic changes of the
proportions of macrophage subclusters were summarized on
UMAP (Supplementary Fig. 5d), and viral-read-containing cells
were mainly concentrated in the engulfing macrophage cluster
(Supplementary Fig. 5e).

To characterize the subtypes of macrophages in detail, we
identified cluster-specific differentially expressed genes (DEGs)
(Fig. 3d), and the top 50 DEGs for each cluster were analyzed in

terms of gene ontology (GO) biological pathways (Fig. 3e and
Supplementary Fig. 5f). DEGs of FABP4+DDX60− macrophages
(the dominant population before SARS-CoV-2 infection) were
enriched in GO terms, including “myeloid cell apoptotic process”
and metabolism-associated pathways (Fig. 3e). APOE+ macro-
phages had DEGs that were enriched in GO terms mainly associated
with lipoprotein metabolism. As expected, DEGs of SPP1hiCHIT1int

M2 macrophages were prominently enriched in GO terms,
including “regulation of tissue remodeling” and biological adhesion,
indicating that this subtype is associated with the recovery phase of
inflammation. In contrast, FABP4+DDX60+ and DDX60+CHIT1hi

macrophages exhibited DEGs enriched for GO terms associated
with activated innate immune response. Supplementary Fig. 5f
summarizes the enriched GO terms originated from DEGs of other
macrophage sub-clusters. Overall, we defined ten different subtypes
of macrophages in SARS-CoV-2 infection, which displayed
extensive heterogeneity.

Transcriptomic changes in each macrophage subpopulation.
Since we observed distinctive proportional changes in the lung
macrophage subtypes during SARS-CoV-2 infection (Fig. 3c), we
next focused on changes in the transcriptome between 2 and 5 dpi
in each macrophage subpopulation. FABP4+DDX60− and
FABP4+DDX60+ macrophages exhibited fewer DEGs than the
other macrophage sub-clusters at 2 and 5 dpi (Supplementary
Fig. 6a, b). On the other hand, DDX60+CHIT1hi macrophages
showed remarkably increased numbers of DEGs at both 2 and
5 dpi, and exhibited increased expressions of IFN-responsive
genes, such as OAS1, ISG15, and RSAD2, at 2 dpi compared to
5 dpi (Supplementary Fig. 6a). DDX60+CHIT1hi macrophages
exhibited higher expressions of inflammatory markers or med-
iators, including HLA-DRB1,MRC1, and SERPINE2, at 5 dpi than
at 2 dpi. In differentiated macrophage sub-clusters, including M1
and M2 macrophages, the dynamicity of gene expression change
was consistently higher at 2 dpi than 5 dpi (Supplementary
Fig. 6b). M1 macrophage clusters showed increased expression of
pro-inflammatory genes (including IL1B, CCL8, and DUSP1) and
IFN-responsive genes (OAS1, ISG15, ISG20, and RSAD2) at 2 dpi
compared to 5 dpi (Supplementary Fig. 6b). SPP1hiCHIT1int M2
macrophages had different DEGs at 2 dpi, including SCD, CHIT1,
and IL4I1 (Supplementary Fig. 6b). Therefore, DDX60+CHIT1hi

macrophages and differentiated M1 and M2 macrophages
exhibited increased and distinctive DEG patterns especially at
2 dpi, the peak of viral titer in SARS-CoV-2 infection.

Different spectrums of M1 or M2 macrophages revealed by
RNA dynamics. To further evaluate the RNA dynamics of the
macrophage cell subpopulations, we analyzed RNA velocity21. The
RNA velocity approach is an objective and superior method for
the analysis of time-resolved phenomena in single-cell tran-
scriptome data using a kinetic model of RNA transcription and
splicing. Few kinetics were observed in resting tissue macrophages
or activated tissue macrophages, while complex kinetics were
formed among monocyte-derived infiltrative macrophages and in
both M1 populations (Fig. 4a). To quantify the kinetic dynamics

Fig. 2 Subpopulation analysis of NK cells and CD8+ T cells. a UMAP plot of the NK cell subpopulations in all groups, colored to indicate cluster
information. b Proportion of each cell type in NK cell clusters at uninfected control (n= 3), 2 dpi (n= 3), and 5 dpi (n= 4). c Violin plots showing
expression levels of STAT1, OAS1, ISG15, GZMB, GZMK, and PRF1 in the five NK cell clusters. d UMAP plot of the CD8+ T-cell subpopulations in all groups,
colored to show cluster information. e, f Violin plots showing expression levels of CD69, S1PR1, ITGAE, OAS1, ISG15, IFNG, GZMB, and PRF1 in the four CD8+

T cell clusters. g UMAP plot in which color density reflects the distributions of CD8+ T cells ferrets in the negative control, at 2 dpi and 5 dpi with SARS-
CoV-2. The red circle indicates a concentrated area of cluster 0 with CD8+ T cells at 2 dpi, and the blue circle indicates that of CD8+ T cells at 5 dpi.
h UMAP plots show normalized expressions of OAS1 and ISG15 in CD8+ T cells. Source data are provided as a Source Data file.
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Fig. 3 Sub-clustering analysis of macrophages. a UMAP plot of the macrophage subpopulations in all groups, colored to show cluster information. b Ten
different clusters and their specific marker gene expression levels, with brightness indicating log-normalized average expression, and circle size indicating the
percent expressed. c Proportion of each macrophage cell type at uninfected control (n= 3), 2 dpi (n= 3), and 5 dpi (n= 4). The height of bars indicates mean
and error bars indicate standard deviation. d Heatmap of cluster-specific differentially expressed genes (DEGs), for each macrophage cell type (n= 9). The color
indicates the relative gene expression, and representative genes are shown together. e Bar plots showing −log10(p value) from enrichment analysis of
representative GO biological pathways among FABP4+DDX60− macrophages (resting tissue macrophages), APOE+ macrophages, SPP1hiCHIT1int M2
(potentially profibrogenic), FABP4+DDX60+ macrophages (activated tissue macrophages), and DDX60+CHIT1hi macrophages (monocyte-derived infiltrating).
The p values are calculated from a theoretical null distribution with a two-sided Wilcoxon signed-rank test. Source data are provided as a Source Data file.
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of RNA velocities, we calculated the length of the arrow in Fig. 4a
(right panel), which represents the RNA velocities. High-velocity
levels were formed in both M1 populations. On the other
hand, low levels of dynamics were observed in FABP4+DDX60+

macrophages (activated tissue macrophages), similar to the
FABP4+DDX60− macrophages (resting tissue macrophages),
which was consistent with the findings from UMAP embedding
(shown in Fig. 4a). Next, we analyzed the direction of the arrow, to
investigate the interactions between various clusters. We observed
an arrow pointing toward the SPP1hi CHIT1int M2 cluster from
the DDX60+CHIT1hi macrophage (monocyte-derived infiltrating)
(Fig. 4a), suggesting that the monocyte-derived infiltrating mac-
rophages significantly contributed to the formation of the
SPP1hiCHIT1int profibrogenic M2 cluster.

We next investigated the dynamic transcriptome changes from
DDX60+CHIT1hi macrophages to M1 or M2 populations. We
found that DDX60+CHIT1hi macrophages were increased during
the acute inflammation period, consistent with a previous study12.
Using pseudotime analysis for single-cell transcriptomics, we traced
the dynamic changes of gene expression from DDX60+CHIT1hi

macrophages to M1 or M2 macrophages22. To validate the
trajectory analysis among macrophage subpopulations, we utilized
Partition-based graph abstraction (PAGA) mapping analysis, which
provides transition graphs estimating connectivity between distinct
cell populations based on the single-cell transcriptome23. As the
PAGA map shows, the DDX60+CHIT1hi infiltrating macrophage
cluster had two distinct paths to M1 and M2 (Supplementary
Fig. 7a). Strong sequential connections between DDX60+CHIT1hi

infiltrating macrophages and CSF3R+IL1B+ISG15− M1 population,
and between CSF3R+IL1B+ISG15− M1 and CSF3R+IL1B+ISG15+

M1 macrophages were the major routes for the M1 differentiation.
These data suggested that separate trajectories to M1 and M2 are
useful to describe their distinct pathways from the monocyte-
derived infiltrating macrophages.

For the trajectory toward M1 macrophages (M1 route) (Fig. 4b,
Supplementary Data 5), we defined four distinctive clusters
showing modular gene expression changes. We summarized their
top five associated transcription factors using the TRRUST
database24, and the top five GO biological pathways (GO-BP)
(Fig. 4c). Notably, cluster 4 of the M1 route (which was
exclusively expressed in highly activated M1 macrophages)
showed concurrently increased expressions of IL1B and IFN-
stimulated genes (ISG15 and ISG20), which were associated with
GO terms of enhanced anti-viral activity in the early phase of the
immune response. These findings indicated that this gene
expression change was part of a natural defense mechanism
involving M1 macrophage differentiation (Fig. 4b). The highly
activated M1 macrophage cluster showed predominant enrich-
ment of pro-inflammatory mediators, including IL1B and CXCL8
(Supplementary Fig. 7b), which was further supported by our
results showing that the highly activated M1 was highly enriched
with gene sets from severe COVID-19 patients (Supplementary
Fig. 7c). These results suggested that the distinct macrophage
subpopulation that was potentially derived from monocyte-
derived infiltrating macrophages had rapidly undergone SARS-
CoV-2-mediated activation of inflammatory macrophage
responses.

For the trajectory toward SPP1hiCHIT1int M2 macrophages
(M2 route) (Fig. 4d, Supplementary Data 6), we defined four
distinct clusters and analyzed their features with GSEA, as
described in Fig. 4e. Cluster 3 of the M2 route showed an
increased association with transcription factors of the peroxisome
proliferator-activated receptor (PPAR) family (PPAR-δ, PPAR-α,
and PPAR-γ) and with pathways associated with cholesterol
metabolism. PPAR-γ activation reportedly may drive monocytes

toward anti-inflammatory M2 macrophages25. Indeed, the next
cluster in the pseudo time trajectory, cluster 4 of the M2 route,
showed increased expressions of C1QB, C1QC, MMP12, and
TGFB2, which are known to be key genes of well-differentiated
M2 macrophages.

Collectively, the macrophage subpopulations underwent time-
dependent and cell-type-specific changes during SARS-CoV-2
infection. These subpopulations exhibited a continuous spectrum
of changes, mainly from the monocyte-derived infiltrating
macrophages, at the transcriptome level.

Analysis of specific gene modules originated from M1 and M2
route. Next, we compared the dynamically changed macrophage
gene modules from M1 and M2 routes with the previously
reported transcriptome changes of COVID-19 patients and
SARS-CoV-2-infected experimental models26,27. GSEA showed
that upregulated gene sets from the postmortem lung tissue of a
COVID-19 patient and a SARS-CoV-2-infected mouse were
commonly associated with cluster 4 of the M1 route (Fig. 5a).
Gene sets from postmortem lung tissue of a COVID-19 patient
were also associated with cluster 3 of the M1 route. Among
actively differentiating features of the M1 transition (from infil-
trating to M1 macrophage), the later phases approaching to M1
population were enriched in the set of upregulated genes from
post-mortem lung tissue of COVID-19 patients. In contrast,
clusters 1 and 2 of the M2 route were highly associated with those
two gene sets (Fig. 5b). Within the M2 differentiation route, genes
in the early phase (cluster 1) were prominently enriched within
this lung tissue gene set. GSEA plots using DEGs derived from the
transcriptome of post-mortem lung tissue of COVID-19 patients
also confirmed these patterns (Supplementary Fig. 8a, b). From
these results, we infer that the post-mortem lung tissue exhibited
well-differentiated and interferon-stimulated M1 features defined
by the trajectory analysis of genes from the SARS-CoV-2 infected
ferrets, while the inflammation-resolving M2-driving features
were less prominent. This finding might be associated with the
poor outcomes in COVID-19 patients with a continuing pro-
inflammatory response.

Immune-modulatory treatments, including corticosteroids and
cytokine-targeted agents, have been considered as a means of
regulating hyper-inflammatory responses in COVID-19 patients;
however, the exact immunological features of the target cells
affected by these treatments is unclear. To evaluate the effect of
immune-modulatory drugs on M1 or M2 differentiation and to
validate our RNA velocity analysis, we performed enrichment
tests on these trajectory-specific modular gene expressions
relative to DEGs that represent immunosuppression derived
from an in vitro experiment (Fig. 5c). Following an in vitro
differentiation protocol using GM-CSF treatment for pro-
inflammatory macrophages, we tested how immunosuppression
impacts human CD14+ monocytes (n= 4) by applying three
different conditions: no inhibition, dexamethasone, and anti-TNF
agent treatment. We then performed RNA-sequencing of the
harvested cells and analyzed DEGs obtained from the dexa-
methasone group and the anti-TNF group compared to those
from the group that received no inhibition. Those two sets of
DEGs were used for GSEA of four clusters from the M1 route,
and other four clusters of the M2 route (Fig. 5d, e; Supplementary
Fig. 8c, d). Interestingly, we observed similar trends in both M1
and M2 routes. The gene sets originated from the later phases of
M1 route (Cluster 4, normalized enrichment score (NES)—1.45,
p= 0.02, permutation test) and the M2 route (Cluster 4, NES—
1.57, p= 0.02, permutation test) were more strongly enriched
among the DEGs induced by dexamethasone-mediated
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suppression (Fig. 5d, e; Supplementary Data 7). GSEA using
DEGs induced by anti-TNF treatment revealed a similar
tendency, but significant enrichment was only found in clusters
3 and 4 of the M2 route (NES—1.54, p= 0.02 and NES—1.49,
p= 0.03, respectively, permutation test) (Supplementary Fig. 8c, d;
Supplementary Data 8). In summary, we found that immunosup-
pressive treatments, including dexamethasone and anti-TNF, were

shown to downregulate the differentiation of macrophages during
the later phases of M1-to-M2 transition.

Discussion
Although recent studies have reported the single-cell tran-
scriptome of BAL fluid cells cross-sectionally obtained from
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COVID-19 patients, none have used a longitudinal approach
along with the natural disease course. Examining BAL fluid cells
can provide additional information complementary to examining
lung tissue in a few aspects. First, BAL is a sampling technique
used to obtain a living immune cell suspension from the lower
respiratory tract, which can be readily analyzed using current
immunological research tools, including flow cytometry and
single-cell sequencing. Studying BAL fluid cells is an efficient way
to focus on the immune landscape of viral infection. However,
lung tissue also provides more precise information about the
degree of immune cell infiltration rather than BAL fluid. Second,
analyzing BAL fluid is a more favorable diagnostic approach for
human patients than collecting lung tissue samples. BAL is less
invasive than surgical biopsy of lung tissue. Additionally, com-
pared to tissue biopsy, BAL fluid may provide more unbiased
information regarding the targeted part of lung tissue. Thus,
analyzing the immune landscape in the BAL fluid of an animal
model could be useful to facilitate the translation of findings from
animal studies to human disease pathogenesis.

In the present study, we investigated single-cell transcriptome
changes throughout SARS-CoV-2 infection using BAL fluid from
a ferret model. We found that specific sub-clusters of NK cells
and CD8+ T cells exhibited increased responses to IFN, especially
at 2 dpi, while their intrinsic cytotoxic properties against viral
infection were preserved. However, considering that antigen-
specific response requires a few weeks to be initiated after
infection, those activation patterns at 2 dpi could be led by
bystander activation of tissue-resident T cells. Relatively late time-
points (14 dpi or 28 dpi) would be required to analyze the SARS-
CoV-2-specific B cell and T cell response. More importantly,
among macrophages—the major population of BAL fluid cells—
we identified 10 different subpopulations that exhibited relative
proportion changes from 0 to 5 dpi. The predominant dynamic
changes of the transcriptome involved monocyte-derived infil-
trating macrophages and differentiated M1/M2 macrophages,
especially at 2 dpi. We also observed distinctive and stepwise
differentiation from monocyte-derived infiltrating macrophages
toward M1 or M2 macrophages.

Our present results included observation of IFN-responsive
signatures, regardless of immune cell type, mostly at 2 dpi. The
presence of an IFN-responsive signature has also been reported in
previous transcriptome studies of SARS-CoV-2 infection3,4,12.
Data are controversial regarding the relationship between IFN
response strength and COVID-19 severity—delayed but robust
expression of IFN-associated genes might provoke harmful
immunopathology, but their early increase is beneficial28. Our
ferret model mimicked SARS-CoV-2 infection with a clinical
course of mild severity and spontaneous recovery. Therefore, our
findings suggest that prominently increased expression of IFN-
responsive genes at 2 dpi might be beneficial in clearing SARS-
CoV-2. This observation is further supported by the observed
increase of the IFN-stimulated M1 subpopulation.

The BAL fluid cells from our ferret model comprised a diverse
subpopulation of macrophages. We annotated 10 different sub-
populations among 17 different clusters based on previous single-
cell studies of alveolar macrophages12,25,29–31. Based on the RNA
velocity analysis, we could infer that the proliferating macrophage
cluster was derived from the tissue macrophage clusters, rather
than from the monocyte-derived macrophage clusters. This
finding is concordant with a previous study that demonstrated
maintenance of tissue-resident macrophages regulated by local
proliferation in the lung32. The presence of the uninfected control
group provided an interesting contrast with specific features of
activated and differentiated macrophages in later phases. The
proportion of FABP4+DDX60− macrophages (resting tissue
macrophages) was near 60% of the macrophage population in
control samples and drastically decreased at 2 and 5 dpi, sug-
gesting either that this population underwent a change of tran-
scriptomic features towards another population or the infiltration
of a new population from circulation. FABP4+DDX60− macro-
phages could have evolved into FABP4+DDX60+ activated tissue
macrophages; however, the increase of activated tissue macro-
phages was not sufficient to fully explain the decreased propor-
tion of resting tissue macrophages. Notably, the increased RNA
velocity of DDX60+CHIT1hi macrophages (monocyte-derived
infiltrating) and M1/M2 macrophages indicated that these were
the major populations that underwent dynamic changes after
SARS-CoV-2 infection. Here, we found that with regards to the
changing macrophage populations, FABP4+DDX60− macro-
phages decreased after inoculation but were not restored later,
and M2 macrophages were increased and remained a major
population from 2 to 5 dpi. These findings indicate that during
the viral resolution phase, an active repair process is underway
rather than complete recovery to preinfection status.

Immuno-modulatory treatments—including corticosteroids and
targeted agents, such as Janus kinase inhibitors—have been con-
sidered to regulate hyper-inflammatory responses in COVID-19
patients9,10,28. To apply such treatments in heterogeneous COVID-
19 patients, we must understand the exact features and proportions
of the target immune cell populations that will be affected. Along
the transcriptome continuum of monocyte-derived infiltrating
DDX60+CHIT1hi macrophages to M1 macrophages (the M1 route)
or M2 macrophages (the M2 route), we found that the later clusters,
similar to more differentiated macrophages, were enriched in the
ranked DEGs downregulated by corticosteroid. Corticosteroid
therapy reduces mortality in cases of severe pneumonia33, and the
beneficial role of dexamethasone in hospitalized COVID-19
patients has also been reported recently34. Our current findings
elucidate the exact macrophage subpopulations affected by these
immuno-modulatory treatments.

Overall, our present study provides fundamental information
regarding the immune response dynamics provoked by SARS-
CoV-2 infection, as well as a detailed description of the natural
course and changes of macrophages in the ferret model.

Fig. 4 Trajectory analysis from MDIM to M1 and M2 macrophages. a Left panel shows a UMAP plot of RNA velocity of macrophage subpopulations.
Arrow direction and length indicate qualitative and quantitative changes, respectively. The right panel shows box-plots of ranges (horizontal line),
interquartile ranges (boxes), and medians (vertical lines) of arrow length using randomly subsampled cells (1/10 of total cells) included in each cluster in
the left panel. b Pseudotime trajectory initiated from monocyte-derived infiltrating macrophages (MDIM) toward M1 macrophages (M1 route). c Left panel
shows relative expression patterns of representative genes in the M1 route plotted along the pseudo time. The color indicates the relative gene expression
calculated by Monocle 2. The right panel shows bar plots of the combined scores in the top-five enrichment analysis of the TRRUST database for
transcription factor analysis, and representative GO biological pathways in clusters 1–4, as defined in the left panel. d Pseudotime trajectory initiated from
MDIM toward M2 macrophages (M2 route). e Left panel shows relative expression patterns of representative genes in the M2 route plotted along the
pseudo time. The right panel shows bar plots of combined scores in the top-five enrichment analysis of the TRRUST database for transcription factor
analysis, and the representative GO biological pathways in clusters 1–4, as defined in the left panel. Source data are provided as a Source Data file.
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Methods
Experimental ferrets. Experiments were performed using 14- to 20-month-old
female ferrets (n= 10, ID Bio Corporation, Cheongju, Korea) that were ser-
ologically negative for influenza A viruses (H1N1 and H2N2), MERS-CoV, and
SARS-CoV. Ferrets were maintained in the isolator (Woori IB Corporation, Dae-
jeon, Korea) in BSL3 of Chungbuk National University. All ferrets were group-
housed with a 12-h light/dark cycle and allowed access to food and water. After two
days of adaption to BSL3 conditions, the ferrets were intranasally inoculated with

phosphate-buffered saline (PBS) (n= 3) or 105.8 TCID50/mL of NMC-nCoV02
(n= 7), while under anesthesia with ketamine (20 mg/kg) and xylazine (1.0 mg/kg).
All animal studies were conducted following protocols approved by the Institu-
tional Animal Care and Use Committee (IACUC) of Chungbuk National Uni-
versity (Approval number CBNUA-1352-20-02).

Virus and cells. SARS-CoV-2 strain NMC-nCoV0218 was propagated in Vero cells
in Dulbecco’s Modified Eagle Medium (DMEM; GIBCO, NY, US, 11-995-040)
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supplemented with 1% penicillin/streptomycin (GIBCO, 15140-122) and TPCK-
treated trypsin (0.5 μg/mL; Worthington Biochemical, NJ, US, TRSEQZ) in a 37 °C
incubator with 5% CO2 for 72 h. The propagated virus was then stored at −80 °C,
and used as the working stock for animal studies. The 50% tissue culture infective
dose (TCID50) was determined via fixation and crystal violet staining.

Harvesting BAL fluid cells. At 2 and 5 dpi, respectively, three and four ferrets
were euthanized, and BAL fluid was collected. As a control group, the three PBS-
treated ferrets were euthanized at 2 dpi and BAL fluid was collected. Briefly, with
the ferret positioned in dorsal recumbency, 30 mL of cold sterile PBS solution
containing 5% fetal bovine serum was injected through the tracheal route and then
collected. This collected BAL fluid was centrifuged at 400 × g for 10 min at 4 °C.
Then the supernatant was removed, and the cell pellet was suspended in 5 mL 10×
RBC lysis buffer (Thermofisher, Waltham, MA, USA, 00-4300-54) diluted 1:10
with distilled water, followed by a 10-min incubation at room temperature. After
the RBC lysis reaction, 20 mL of 1× PBS was added to stop the lysis reaction,
followed immediately by centrifugation at 500 × g for 5 min at 4 °C. Then the
supernatant was removed, followed by cell number and viability analyses.

Virus isolation from the lungs of infected ferrets. The virus titers in collected
lung tissues were determined by TCID50 in Vero cells. Briefly, lung tissue samples
were homogenized in an equal volume (1 g/mL) of cold 1× PBS containing 1%
penicillin/streptomycin. Tissue homogenates were centrifuged at 5000 × g for
15 min at 4 °C, and then the supernatants were serially diluted (10−1 to 10−8) in
DMEM. Dilutions of each sample were added to Vero cells, followed by a 2-h
incubation. Next, the media (DMEM) was changed, and the cytopathic effects
(CPEs) were monitored for 4 days. We determined the TCID50 through fixation
and crystal violet staining.

Histology. Lung tissue samples were collected at 2 and 5 dpi, incubated in 10%
neutral-buffered formalin for fixation and then embedded in paraffin following
standard procedures. The embedded tissues were sectioned and dried for 3 days at
room temperature. Then the tissue sections were placed on glass slides, stained
with hematoxylin and eosin (H&E), and compared with the PBS control group.
Slides were viewed using an Olympus IX 71 (Olympus, Tokyo, Japan) microscope,
and images were captured using DP controller software.

scRNA-seq analysis and basic quality control. Reference sequence and gene
information were downloaded from the Ensembl database (MusPutFur1.0, under
accession number GCF_000215625.1), and then annotated with human ortholog
genes using the same database (Biomart database, GRCh38). The SARS-CoV-2
sequence was downloaded from NCBI GenBank (Wuhan-Hu-1, a widely used
reference sequence, under accession number NC_045512). Reference genome
information was pre-processed for single-cell data processing using mkref (Cell
Ranger; 10× genomics, Pleasanton, CA, US, v3.0.2), and the fastq files were gen-
erated through the process of demultiplexing the sequenced data (Cell Ranger).
Next, the reads were aligned to the ferret–virus combined reference genome, and
the aligned read data were analyzed using Seurat R package v3.1.535. Based on the
characteristics of inflammatory tissue and the assumption that viral transcripts can
present in dying cells, we did not exclude low-quality cells from the analysis.
Ambient RNAs were examined and adjusted using SoupX (https://doi.org/10.1101/
303727), and were present in 1–3% of each sample, indicating that the samples
were relatively clean/washed. We also excluded doublets perceived based on the
dual expression of cell-type-specific gene expression markers, which were domi-
nant in the cluster “Doublet.” Despite high variability in the number of UMIs
detected per cell, most cells were enriched with UMIs within a reasonable range
(interquartile range: 2455–12,764).

In each cell, gene expression was normalized and scaled using the SCTransform
algorithm36. Dimensional reduction and visualization were performed via principal
components analysis (PCA) and UMAP—using the top 20 PCs for whole-cell
types, 5 PCs for NK and CD8 T cells, and 13 PCs for monocyte/macrophage cell
types—with parameters of min.dist= 0.2, and n.neighbor= 20. Lastly, the cells
were clustered by unsupervised clustering, using the default pipeline of the Seurat
package (resolution= 0.4 for whole-cell types, 0.3 for NK cells, 0.2 for CD8+ T

lymphocytes, and 0.6 for monocytes/macrophages). We observed two polymorphic
genes that significantly affected the clustering of a subset of macrophages by
samples: HLA-DQA1 and ENSMPUG00000007244, the latter of which is putative
HLA-DQB1 or HLA-DQB2, and has a DNA sequence that overlaps 78.03–78.81%
with human HLA-DQB1 or HLA-DQB2. We removed these two genes from the
count matrix and re-processed, and found that the batch effect was resolved.

Marker detection and differential expression analysis. To identify marker
genes, we selected genes in each cluster that were upregulated relative to the other
clusters, based on the Wilcoxon rank-sum test in Seurat’s implementation (Fin-
dAllMarkers function), with a >0.25 log fold change compared with the other
clusters and a Bonferroni-adjusted p value of <0.05. To investigate the dynamic
changes in gene expression in certain cell clusters, we tested DEGs, using the
Wilcoxon rank-sum test (Supplementary Fig. 6). Gene names that had a human
ortholog were marked when the p value was <0.05, and the absolute value of the
log2 fold change was >0.4.

GO and pathway enrichment analyses. As shown in Fig. 3e and Supplementary
Fig. 5f, cluster-specific expression markers were subjected to GO enrichment
analysis37, which is based on the performance of Fisher’s exact test on curated gene
sets annotated according to the GO consortium in the biological process category.
Ontology terms associated with T cells and eosinophils, and near-duplicated terms,
were removed using a custom script, with the following exclusion criteria: GO
terms, including “T_HELPER|T_CELL”, “EOSINOPHIL”, “POSITIVE”, or
“NEGATIVE”. For each cluster, the top 50 genes (prioritized by fold change when
comparing each cluster with the rest) were subjected to the enrichment test. Genes
that were expressed in >80% of cells in the rest of the clusters were excluded.

To predict transcription factors that might drive macrophage differentiation in
pathology, the same enrichment test was performed using the TRRUST
transcription factor-target gene database24.

RNA velocity. To investigate the characteristics of RNA dynamics among mac-
rophages in the ferret model, we analyzed RNA velocity based on modeling gene
expression induction and repression using spliced and unspliced reads. This
technique was previously demonstrated to be feasible in a 3ʹ captured single-cell
RNA sequencing library using the velocyto tool21. Spliced and unspliced reads were
counted using the run10× command in the velocyto tool with default options. The
count matrixes were filtered using velocyto’s standard pipeline, with min.max.
cluster.average parameters of 0.08 for the spliced read count matrix, and 0.06 for
the unspliced read count matrix. Totally, 5000 cells (approximately 1/10 of total
cells) were randomly selected among a macrophage/monocyte population of
40,241, 5000 cells with pooling of the 20 nearest neighbors in the spliced/unspliced
count matrix. Through this process, the cell distance matrix was derived from
Seurat’s shared neighborhood network matrix with default parameters (Find-
Neighbors function). Velocity estimation was conducted using the options of
deltaT= 1, fit.quantile= 0.05, and kCells= 1 (as k-nearest neighbor pooling was
already performed before the random sampling of 5000 cells).

Analysis of dynamic transcriptome changes accompanying M1 and M2
differentiation. To investigate the dynamic changes along the M1 and M2
differentiation pathways, we exported related cell clusters for monocle’s standard
analysis process. The related clusters included weakly activated M1, highly
activated M1, and monocyte-derived infiltrating macrophages for the M1
pathway; and monocyte-derived infiltrating macrophages and SPP1highCHIT1int

profibrogenic M2 for the M2 pathway. Briefly, CellDataSet objects were built
based on normalized count (SCTransform), and then processed using estima-
teSizeFactor and estimateDispersions function (default option), detectGenes
(with the min_expr= 0.1 option), setOrderingFilter and reduceDimension (with
options of max_components= 3, and method= “DDRTree”), orderCells
(default option), and plot_cell_trajectory (default option). Trajectory-specific
genes were grouped into four clusters using hierarchical clustering. Finally, each
cluster was subjected to further enrichment analysis for transcription regulation
or ontology-based analysis.

Fig. 5 GSEA of gene modules originated from the M1 route and M2 route. a, b Gene set enrichment analysis (GSEA) of clusters 1–4 of the M1 route a. and
M2 route b. using public transcriptome data, including post-mortem lung tissue from a COVID-19 patient (GSE147507) and lung tissue from a SARS-CoV-
2-infected mouse (GSE150847). For calculating combined scores, upregulated genes derived from COVID-19 patients’ lung tissue and SARS-CoV-2-
infected mouse lung were compared to the marker genes of pseudo time clusters of M1 or M2 route, which was calculated from the p value obtained using
Fisher’s exact test and the z-score (see “Methods”). Commonly upregulated genes are listed in the box right side of each bar graph. c Experimental design
to make dexamethasone and etanercept responsive gene sets for GSEA of clusters 1–4 of the M1 and M2 route. d, e GSEA of clusters 1–4 of the M1 route
(c) and M2 route (d) using ranked gene list originated from dexamethasone-downregulated DEGs derived from in vitro experiment described in (c). The
name of genes included as core enrichment was listed, NES normalized enrichment score. The p values of the combined score are calculated with a two-
sided Fisher’s exact test. The p value of GSEA is the probability under the null distribution calculated by the permutation test. Source data are provided as a
Source Data file.
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RNA-sequencing of cultured cells. Fifty milliliters of peripheral blood was
obtained from four human healthy volunteers, who were provided written
informed consent. This study was approved by the institutional review board of
KAIST (IRB No. KH2018-118). Peripheral blood mononuclear cells (PBMCs) were
isolated from whole blood via standard Ficoll-Paque (GE Healthcare, Uppsala,
Sweden, 17-5442-02) density gradient centrifugation. Classical monocytes were
isolated from PBMCs using the Classical Monocyte Isolation Kit, human (Miltenyi
Biotec, Bergisch Gladbach, Germany, 130-117-337) according to the manu-
facturer’s protocol. Isolated classical monocytes were cultured in 12-well plates
with 50 ng/mL of GM-CSF (Peprotech, NJ, US, 215-GM) added to 1.5 mL RPMI
medium per well (750,000 cells per well). On day 3, half of the medium from each
well of cell culture was replaced with a fresh medium including the immunosup-
pressive medications (negative control, dexamethasone 10 nM, or Etanercept
10 nM). On day 7, we harvested and cryopreserved the cultured cells in Trizol
reagent (Invitrogen, CA, USA, 15596026) and RNA extraction was performed
following the manufacturer’s instructions. The total RNA quality was measured by
the Agilent 2100 Bioanalyzer System (Agilent, CA, US). Extracted RNA samples
were processed using the TruSeq Stranded mRNA Library Prep Kit (Illumina, CA,
US, 20020594) and sequenced on an Illumina NovaSeq 6000 (Illumina). Read
counts and RNA-Seq by Expectation-Maximization (RSEM)38 were calculated and
DEGs were analyzed using DESeq239.

Gene set enrichment analysis. Gene set enrichment analysis (GSEA) was per-
formed using enrichR27, which provided a “combined score” as the degree of
enrichment. The combined score (c) was calculated from the p value (p) obtained
using Fisher’s exact test and the z-score (z) of the deviation from the expected rank,
as in Eq. (1):40

c ¼ logðpÞ � z ð1Þ
For the ranked list of genes, we also utilized GSEA plots with the NES and the p

value41.

Statistical analysis. The statistical significance of the combined scores from GSEA
results was assessed by paired t test. Data plotting, interpolation, and statistical
analysis were performed using GraphPad Prism 8.2 (GraphPad Software, La Jolla,
CA). Statistical details of experiments are described in the Figure legends. A p value
less than 0.05 is considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single cell RNA-sequencing data has been deposited in the GEO database under the
primary accession code GSE171828. Sequencing data referred to in this paper are
available in the GEO database with the primary accession codes GSE147507 and
GSE149689. The data that support the findings of this study are available from the
corresponding author upon reasonable request. Source data are provided with this paper.

Code availability
All the custom codes used in this study are available at Github and Zenodo (https://
github.com/kijong-yi/SARS-CoV-2_Ferret_BAL)42.
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