2,787 research outputs found

    Ribosomal small subunit sequence diversity of Scutellospora within single spores and roots of bluebell from a woodland community.

    Get PDF
    Roots of bluebell (Hyacinthoides nonscripta) were sampled from a woodland in Yorkshire,UK and spores of an arbuscular mycorrhizal fungus Scutellospora sp., were obtained from the surrounding soil. Partial small subunit (SSU) ribosomal RNA sequences were amplified from both roots and spores using either the universal forward primer SS38 or the Glomales-specific primer VANS1, with the reverse Gigasporaceaespecific primer VAGIGA. Amplified products were cloned and sequenced. Both spores and roots yielded sequences related to those known from fungi within the Glomales,with up to four distinct SSU sequences obtained from individual spores. The VANS1 primer-binding site varied considerably in sequence and only a subset of Scutellospora sequences were amplified when the VANS1 primer was used. In addition to glomalean sequences, a number of different sequences, apparently from ascomycetes, were obtained from both root and spore samples

    Response of a marine-terminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago

    Get PDF
    Long-term records of Greenland outlet-glacier change extending beyond the satellite era can inform future predictions of Greenland Ice Sheet behavior. Of particular relevance is elucidating the Greenland Ice Sheet's response to decadal- and centennial-scale climate change. Here, we reconstruct the early Holocene history of Jakobshavn Isbræ, Greenland's largest outlet glacier, using 10Be surface exposure ages and 14C-dated lake sediments. Our chronology of ice-margin change demonstrates that Jakobshavn Isbræ advanced to deposit moraines in response to abrupt cooling recorded in central Greenland ice cores ca. 8,200 and 9,300 years ago. While the rapid, dynamically aided retreat of many Greenland outlet glaciers in response to warming is well documented, these results indicate that marine-terminating outlet glaciers are also able to respond quickly to cooling. We suggest that short lag times of high ice flux margins enable a greater magnitude response of marine-terminating outlets to abrupt climate change compared to their land-terminating counterparts

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.Comment: Accepted for publication in Advances in Space Research (3 April 2010

    Profiling Gene Expression to Distinguish the Likely Active Diazotrophs from a Sea of Genetic Potential in Marine Sediments

    Get PDF
    Nitrogen (N) cycling microbial communities in marine sediments are extremely diverse, and it is unknown whether this diversity reflects extensive functional redundancy. Sedimentary denitrifiers remove significant amounts of N from the coastal ocean and diazotrophs are typically regarded as inconsequential. Recently, N fixation has been shown to be a potentially important source of N in estuarine and continental shelf sediments. Analysis of expressed genes for nitrite reductase (nirS) and a nitrogenase subunit (nifH) was used to identify the likely active denitrifiers and nitrogen fixers in surface sediments from different seasons in Narragansett Bay (Rhode Island, USA). The overall diversity of diazotrophs expressing nifH decreased along the estuarine gradient from the estuarine head to an offshore continental shelf site. Two groups of sequences related to anaerobic sulphur/iron reducers and sulphate reducers dominated libraries of expressed nifH genes. Quantitative polymerase chain reaction (qPCR) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) data shows the highest abundance of both groups at a mid bay site, and the highest nifH expression at the head of the estuary, regardless of season. Several potential environmental factors, including water temperature, oxygen concentration and metal contamination, may influence the abundance and nifH expression of these two bacterial groups

    Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy

    Full text link
    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy-convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.Comment: 11 pages, 5 figures, http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm

    Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

    Full text link
    We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Our main contribution to this particular problem is to show that our seller/buyer prices are the upper/lower good deal bounds of Cochrane and Sa\'{a}-Requejo (2000) and of Bj\"{o}rk and Slinko (2006) and to determine the analytical properties of these prices. Second, we apply our method to price options in the presence of stochastic volatility. Our main contribution to this problem is to show that the instantaneous Sharpe ratio, an integral ingredient in our methodology, is the negative of the market price of volatility risk, as defined in Fouque, Papanicolaou, and Sircar (2000).Comment: Keywords: Pricing derivative securities, incomplete markets, Sharpe ratio, correlated assets, stochastic volatility, non-linear partial differential equations, good deal bound

    High Temperature Electron Localization in dense He Gas

    Get PDF
    We report new accurate mesasurements of the mobility of excess electrons in high density Helium gas in extended ranges of temperature [(26T77)K][(26\leq T\leq 77) K ] and density [(0.05N12.0)atomsnm3][ (0.05\leq N\leq 12.0) {atoms} \cdot {nm}^{-3}] to ascertain the effect of temperature on the formation and dynamics of localized electron states. The main result of the experiment is that the formation of localized states essentially depends on the relative balance of fluid dilation energy, repulsive electron-atom interaction energy, and thermal energy. As a consequence, the onset of localization depends on the medium disorder through gas temperature and density. It appears that the transition from delocalized to localized states shifts to larger densities as the temperature is increased. This behavior can be understood in terms of a simple model of electron self-trapping in a spherically symmetric square well.Comment: 23 pages, 13 figure
    corecore