531 research outputs found

    Recursive Detection and Analysis of Nanoparticles in Scanning Electron Microscopy Images

    Full text link
    In this study, we present a computational framework tailored for the precise detection and comprehensive analysis of nanoparticles within scanning electron microscopy (SEM) images. The primary objective of this framework revolves around the accurate localization of nanoparticle coordinates, accompanied by secondary objectives encompassing the extraction of pertinent morphological attributes including area, orientation, brightness, and length. Constructed leveraging the robust image processing capabilities of Python, particularly harnessing libraries such as OpenCV, SciPy, and Scikit-Image, the framework employs an amalgamation of techniques, including thresholding, dilating, and eroding, to enhance the fidelity of image processing outcomes. The ensuing nanoparticle data is seamlessly integrated into the RStudio environment to facilitate meticulous post-processing analysis. This encompasses a comprehensive evaluation of model accuracy, discernment of feature distribution patterns, and the identification of intricate particle arrangements. The finalized framework exhibits high nanoparticle identification within the primary sample image and boasts 97\% accuracy in detecting particles across five distinct test images drawn from a SEM nanoparticle dataset. Furthermore, the framework demonstrates the capability to discern nanoparticles of faint intensity, eluding manual labeling within the control group.Comment: 9 pages, 10 figure

    VLBI observations of the Crab nebula pulsar

    Get PDF
    Observations were made at meter wave-lengths using very long base-line interferometry techniques. At 196.5 MHz no resolution of the pulsar are observed; all the pulse shapes observed with the interferometers are similar to single dish profiles, and all the power pulsates. At 111.5 MHz besides the pulsing power there is always a steady component, presumably due to interstellar scattering. The pulsar is slightly resolved at 111.5 MHz with an apparent angular diameter of 0.07 sec ? 0.01 sec. A 50 percent linear polarization of the time-averaged power is noted at 196.5 MHz; at 111.5 MHz, 20 percent of the total time-averaged power is polarized, 35 percent of the pulsing power is polarized, and the steady component is unpolarized

    Laser Applications

    Get PDF
    Contains research objectives and reports on three research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-71-C-0300U. S. Air Force Office of Scientific Research (Contract F44620-71-C-0051)Naval Air Systems Comman

    Rate of tarsal and metatarsal bone mineral density change in adults with diabetes mellitus and peripheral neuropathy: A longitudinal study

    Get PDF
    BACKGROUND: In people with diabetes (DM) and peripheral neuropathy (PN), loss of bone mineral density (BMD) in the tarsals and metatarsals contribute to foot complications; however, changes in BMD of the calcaneal bone is most commonly reported. This study reports rate of change in BMD of all the individual bones in the foot, in participants with DM and PN. Our aim was to investigate whether the rate of BMD change is similar across all the bones of the foot. METHODS: Participants with DM and PN (n = 60) were included in this longitudinal cohort study. Rate of BMD change of individual bones was monitored using computed tomography at baseline and 6 months, 18 months, and 3-4 years from baseline. Personal factors (age, sex, medication use, step count, sedentary time, and PN severity) were assessed. A random coefficient model estimated rate of change of BMD in all bones and Pearson correlation tested relationships between personal factor variables and rate of BMD change. RESULTS: Mean and calcaneal BMD decreased over the study period (p \u3c 0.05). Individual tarsal and metatarsal bones present a range of rate of BMD change (-0.3 to -0.9%/year) but were not significantly different than calcaneal BMD change. Only age showed significant correlation with BMD and rate of BMD change. CONCLUSION: The rate of BMD change did not significantly differ across different foot bones at the group level in people with DM and PN without foot deformity. Asymmetric BMD loss between individual bones of the foot and aging may be indicators of pathologic changes and require further investigation. TRIAL REGISTRATION: Metatarsal Phalangeal Joint Deformity Progression-R01. Registered 25 November 2015, https://clinicaltrials.gov/ct2/show/NCT02616263

    High resolution observations of Cassiopeia A at meter wavelengths

    Get PDF
    Very long baseline interferometric (VLBI) observations of the supernova remnant Cassiopeia A, at 74 MHz with a 12,000-wavelength baseline and at 111 MHz with a 18,500-wavelength baseline, are reported. The fringe amplitudes are strongly varying on a time scale of about 15 to 30 minutes. The location of the extra source must lie outside the supernova remnant shell possibly associated with a concentration of emission north of the shell, or lying outside the gap in the northeastern side of the shell. The flux and spectral index deduced for the compact source depend on the assumed size, with a range of 100 Jy to 500 Jy at 74 MHz. If the source is associated with the supernova explosion, it must have been traveling at least 5000 km s/2
    • …
    corecore