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Rate of tarsal and metatarsal bone mineral 
density change in adults with diabetes mellitus 
and peripheral neuropathy: a longitudinal study
Nicholas J. Youmans1, Rachana S. Vaidya1, Ling Chen1, Hyo‑Jung Jeong2,3, Alexa York1, Paul K. Commean1, 
Mary K. Hastings1 and Jennifer A. Zellers1*   

Abstract 

Background In people with diabetes (DM) and peripheral neuropathy (PN), loss of bone mineral density (BMD) in 
the tarsals and metatarsals contribute to foot complications; however, changes in BMD of the calcaneal bone is most 
commonly reported. This study reports rate of change in BMD of all the individual bones in the foot, in participants 
with DM and PN. Our aim was to investigate whether the rate of BMD change is similar across all the bones of the 
foot.

Methods Participants with DM and PN (n = 60) were included in this longitudinal cohort study. Rate of BMD change 
of individual bones was monitored using computed tomography at baseline and 6 months, 18 months, and 3–4 years 
from baseline. Personal factors (age, sex, medication use, step count, sedentary time, and PN severity) were assessed. 
A random coefficient model estimated rate of change of BMD in all bones and Pearson correlation tested relation‑
ships between personal factor variables and rate of BMD change.

Results Mean and calcaneal BMD decreased over the study period (p < 0.05). Individual tarsal and metatarsal bones 
present a range of rate of BMD change (‑0.3 to ‑0.9%/year) but were not significantly different than calcaneal BMD 
change. Only age showed significant correlation with BMD and rate of BMD change.

Conclusion The rate of BMD change did not significantly differ across different foot bones at the group level in peo‑
ple with DM and PN without foot deformity. Asymmetric BMD loss between individual bones of the foot and aging 
may be indicators of pathologic changes and require further investigation.

Trial registration Metatarsal Phalangeal Joint Deformity Progression—R01. Registered 25 November 2015, https:// 
clini caltr ials. gov/ ct2/ show/ NCT02 616263

Keywords Foot, Ankle, Orthopedics, Endocrinology, Computed tomography, Calcaneus, Bone loss

Introduction
Diabetes mellitus (DM) is a metabolic disorder that 
affects an estimated 463 million people worldwide [1]. In 
2021, approximately 45% of adults with DM worldwide 
remained undiagnosed and, consequently, medically 
unmanaged [2]. Poorly controlled DM causes damage to 
many different body systems and presents with a com-
plex clinical presentation [3]. Peripheral neuropathy (PN) 
occurs in nearly 50% of adults with DM and results in the 
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loss of protective sensation and motor function [4, 5]. 
The distal to proximal progression of PN in DM results 
in foot complications that are common and costly [6]. 
In particular, foot deformity and fracture are key con-
tributors to the events leading to ulceration, infection, 
and amputation [3, 7–10] and people with DM have 
a 25 times greater risk of lower limb amputation than 
those without DM [11]. Thus, identifying modifiable fac-
tors contributing to the development of foot deformity 
is critical for successfully managing DM and preventing 
serious PN consequences, such as ulcers and amputation 
[12–14].

Foot fracture risk and deformity are associated DM 
complications [15] and have been linked to the loss of 
tarsal and metatarsal bone mineral density (BMD) [16, 
17]. Of particular interest, individuals with type 2 DM 
showed the most significant elevation of fracture risk 
in the foot, where the relative risk was 37% higher than 
that in the control population without type 2 DM, sug-
gesting the involvement of PN in fracture predisposition 
[18]. BMD is a strong predictor of fracture and adults 
with DM have been observed to have higher BMD but 
lose BMD at a faster rate than age-matched controls [8, 
19, 20]. Due to dual-energy X-ray absorptiometry scan-
ning protocols, most studies of foot BMD in DM have 
measured only the calcaneus [18, 19, 21–25]. However, 
any foot bone or joint can be the site of DM-associated 
foot deformity or fracture, and calcaneal BMD alone may 
not reflect what is occurring across distal foot bones and 
joints. Volumetric quantitative computed tomography 
has allowed quantification of individual foot bone BMD, 
however, the studies that have been completed with this 
imaging technique are cross-sectional in study design 
[26, 27]. A recent cross-sectional study, for example, 
demonstrated differences in BMD between the talus and 
calcaneus in healthy individuals, yet whether the bones 
of the foot lose BMD similarly over time is unknown. 
Our study addresses this gap by measuring longitudinal 
changes in BMD of individual tarsals and metatarsals in 
people with DM and PN.

This study aims to identify the rate of BMD change 
in the tarsals and metatarsals of adults with DM and 
PN. We hypothesized that BMD would decrease over 
time in all bones. Our primary null hypothesis was that 
there would be no significant differences in rate of BMD 
change between the tarsal and metatarsals compared 
to the calcaneus. We further hypothesized that factors 
such as age, sex, activity level, and severity of PN would 
affect the rate of BMD change. Considering altered bone 
turnover and concurrent risk for increased secondary 
complications of DM, the rate of BMD change in the foot 
may provide clues to improve screening and manage-
ment of long-term complications of the disease, reduce 

healthcare costs, and improve the quality of life for adults 
affected by DM.

Methods
Study design
This is a prospective, longitudinal clinical trial of second-
ary outcomes included in a larger clinical trial (Clini-
calTrials.gov: NCT02616263). Participants with type 2 
DM and PN were randomized in one of two interven-
tion cohorts, which received targeted strengthening and 
stretching interventions on either the foot or shoulder. 
For the purposes of this analysis, all participants were 
assessed as one cohort. A sensitivity analysis was com-
pleted to ensure there were no significant differences in 
BMD between the intervention groups prior to collapsing 
the groups. The detailed findings of the sensitivity analy-
sis are reported in the results section. Data were collected 
over the course of three to four years at four-time points: 
baseline (T1), 0.5  years (T2), 1.5  years (T3), and at the 
conclusion of the study (3–4 years after baseline, T4) [28, 
29]. Time was treated as a continuous variable to account 
for variation in the actual date of reassessment for each 
participant.

Participants
Participants were recruited from the Recruitment 
Enhancement Core of the Institute of Clinical and Trans-
lational Sciences at the Washington University School 
of Medicine in St. Louis, email blasts to a senior center, 
along with several databases (e.g., Research Participant 
Registry through Volunteers for Health, and patient data-
bases of the Applied Biomechanics and Human Biody-
namics Laboratories). Inclusion criteria were type 2 DM 
diagnosed by the participants’ healthcare providers and 
PN assessed by the study team. In order to capture the 
multi-system effects of PN, presence of PN was defined 
as any of the following: inability to feel a 5.07 Semmes 
Weinstein Monofilament in at least one location on the 
plantar aspect of the foot, a vibration perception thresh-
old greater than 25  V on biothesiometry, or a score of 
greater than or equal to 2 on the Michigan Neuropa-
thy Screening Instrument (1 point is given for each foot 
abnormality including deformities, dry skin, calluses, 
infections, fissures, and ulcers) [30]. For the purposes of 
analysis, PN severity was represented by each partici-
pant’s Michigan Neuropathy Screening Instrument score. 
Exclusion criteria were PN of non-DM etiology, ankle 
brachial index of < 0.9 or > 1.3 indicating severe arterial 
disease [11, 31], amputation of more than one toe, acute 
shoulder injury, pregnancy, > 180  kg—the weight limit 
capacity of the magnetic resonance imaging (part of the 
parent study) scanner, active neuropathic ulceration, 
inability to walk without a device or complete required 
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testing, presence of non-magnetic resonance imaging 
compatible metal implants, age greater than 75 years, or 
completion of less than two computed tomography (CT) 
scans over the course of the study. Race was self-reported 
on intake. Each participant completed the Foot and 
Ankle Ability Measure [32] for descriptive purposes. The 
Foot and Ankle Ability Measure is a self-reported meas-
ure of foot and ankle specific symptoms and function, 
with higher scores indicating less disability/symptoms 
(maximum score of 100). No participants experienced 
non-healing plantar ulceration or amputation during the 
course of the study. While exclusion criteria included 
history of non-healing ulceration, participants were not 
withdrawn from the study if they acquired wounds dur-
ing the study. Nine participants self-reported occurrence 
of foot wounds (from non-traumatic causes as well as 
known trauma – cuts, scratches, etc.) during the course 
of the study, which were able to heal. Wounds were 
defined as any break in skin continuity of any depth. All 
wounds reported by participants were non-tunneling. 
Wound management for all instances of foot wounds 
required neither immobilization nor offloading. The par-
ticipant demographics and characteristics are in Table 1.

Bone mineral density acquisition
A spiral CT scanner (Siemens Biograph 40 True-
Point Tomograph) was used to scan each participant’s 
lower extremity capturing the entire ankle mortise of 
the selected side as well as all tarsals and metatarsals. 
Scans were performed at all four time points. Partici-
pants underwent CT scans of the foot in 30 degrees of 
plantarflexion and metatarsophalangeal joints in rest-
ing position (Fig. 1: Panel A). A CT calibration phantom 
(Mindways, Austin, TX, USA; Calibration value: L11G 
11F1 1171 611L) containing multiple discs of calcium 

hydroxyapatite of different densities was placed in front 
of the foot for all scans. The CT scanning parameters 
were 0.5  s rotation time, 64 × 0.6  mm collimation, 220 
mAs, 120 kVp, a pitch of 1, a 512 × 512 matrix, and a 
voxel size of 0.6 × 0.6 × 0.6  mm3.

BMD of each of the 12 tarsals and metatarsals was 
obtained using a previously published protocol [17, 27]. 
Each tarsal and metatarsal was individually segmented, 
and Hounsfield Unit (HU) was converted to BMD (mg/
cm3) using the calibration phantom (Fig. 1: Panel B).

Participant activity level
The physical activity level of each participant was 
obtained at baseline (T1) using an ActiGraph wGT3X-BT 
activity monitor (ActiGraph, Pensacola, FL). Participants 
were asked to wear the ActiGraph full-time for 5 days, of 
which the middle 3 days were used for analysis (to ensure 
only days with a full 24-h wear time were included in 
analysis). The ActiGraph was placed on the participant’s 
wrist of the non-dominant hand using a band that pre-
vented removal during the 5-day collection period. Daily 
step count and sedentary time (minutes) were calculated 
using ActiLife software and were included in statistical 
analysis.

Medication and diabetes management
Participants’ medication use and diabetes management 
strategies were obtained via self-report at baseline (T1). 
Medications were classified as statins or non-statins for 
use in statistical analysis because statin use is known 
to increase BMD [33]. No participants reported taking 
bisphosphonate medications, a common class of medi-
cations used to treat osteoporosis [34]. The diabetes man-
agement strategies were collected with four choices (i.e., 

Table 1 Participant Demographics and Characteristics

SD Standard Deviation

Characteristic Number of Participants Mean SD

Sex 34 F/26 M ‑ ‑

Age at baseline (years) 60 67 6

Race 16 Black or African‑American/
42 White/
3 More than one race

‑ ‑

Height (cm) 60 169 9

Weight (kg) 60 99.6 20.7

Body Mass Index (kg/m2) 60 35.1 7.4

Hemoglobin A1C (%) 59 7.1 1.3

Michigan Neuropathy Screening Instrument Score 60 5 1

Foot and Ankle Ability Measure Total 60 80 20

Diabetes duration at baseline (years) 60 14 10
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diet, exercise, oral medications, and insulin) and allowed 
multiple selections.

Statistical analysis
All BMD measures were checked for normality assump-
tions via Shapiro–Wilk test and visual inspection of QQ 
plots and histograms. All data met normality assump-
tions. Alpha level of significance was set at 0.05 a priori 
for all analyses.

A random coefficients model (linear mixed model) 
was used to estimate the annual rate of change (slope) 
of BMD (mg/cm3 per year) in the calcaneus and mean of 
all tarsal and metatarsal bones. This model allowed both 
intercept and slope to vary randomly between subjects 
and fitted a separate regression line for each individual 
subject. A separate random coefficients model analysis 
was performed to predict annual rate of BMD change for 
individual tarsals and metatarsals.

To determine if there are any significant differences in 
rate of BMD change between the bones of the foot, an 
additional random coefficients model was built to test 
for significance of bone name by time interaction with 
significant interaction meaning a different rate of BMD 
change between bones. In the current body of literature, 
the calcaneus is the most frequently used bone to assess 
foot BMD [19, 35], so the calcaneus was selected as the 
referent value for this analysis. The estimated rate of 
BMD change of each individual tarsal and metatarsal are 
reported.

Personal factor variables that were hypothesized to 
affect mean BMD (mg/cm3) and calcaneal BMD (mg/
cm3) included age, sex, step count, sedentary time, and 

Michigan Neuropathy Screening Instrument score. A 
covariance pattern model (linear mixed model) was fit 
to assess the association between the personal factors 
and BMD variables and accounted for the correlation of 
repeated measures of BMD from the same subject over 
time. Relationships between personal factor variables and 
rate of BMD change (mg/cm3 per year) were tested using 
Pearson correlation coefficient.

Results
Participant characteristics are included in Table  1. Ten 
participants managed their diabetes with diet, 10 with 
exercise, 44 with oral medications, and 19 with insulin.

The mean rate of BMD change of all tarsals and meta-
tarsals (N = 60) was -1.57  mg/cm3 per year (p = 0.0447) 
(Fig.  2A). The mean rate of calcaneal BMD (N = 60) 
change was -2.03 mg/cm3 per year (p = 0.0004) (Fig. 2B). 
There was no statistically significant interaction between 
group assignment (shoulder or foot intervention) and 
time for both rate of mean BMD change (mg/cm3 per 
year) (p = 0.3207) and rate of calcaneal BMD change (mg/
cm3 per year) (p = 0.1333) (Table 2), suggesting that the 
intervention provided in the parent study did not influ-
ence the rate of BMD change. Therefore, all participants 
were combined to form a single cohort for the purposes 
of this analysis.

Individual tarsal and metatarsal bone mineral density
The results of a linear mixed model analysis using each 
tarsal and metatarsal bone as a single input variable 
and calcaneal BMD as a reference variable indicate that 
the rate of BMD change (mg/cm3 per year) was not 

Fig. 1 Images of Foot Positioning for CT scan and Segmentation of foot bones. Panel A CT scan of target leg resting on a stabilization board 
holding the ankle in 30 degrees of plantar flexion and metatarsophalangeal joints in the resting position; Panel B Sagittal cross‑section of 
segmentation of tarsals and metatarsals (from left: calcaneus, talus, navicular,  1st cuneiform,  1st metatarsal)
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significantly different between the calcaneus and any 
other bone included in the analysis (p = 0.9966). Descrip-
tive statistics for rate of BMD change (mg/cm3 per year) 
for individual bones are reported in Table 3.

Factors influencing rate of BMD change
The rate of mean BMD change (mg/cm3 per year) and 
rate of calcaneal BMD change (mg/cm3 per year) were 
not impacted by sex, PN severity as determined by score 
on the Michigan Neuropathy Screening Instrument, daily 
step count, sedentary time, or statin use (Table 4). Data 
for daily step count and sedentary time was obtained 
from ActiGraph data, which was initiated after the begin-
ning of the study, resulting in an incomplete baseline data 
set for these variables. There was a significant main effect 
of age on mean (p = 0.0086) and calcaneal (p = 0.0256) 
BMD (mg/cm3) with lower BMD associated with older 
age. The linear mixed effects model analysis suggests 
that the average mean BMD decreases by 2.1793 mg/cm3 
(p = 0.0086) and calcaneal BMD decreases by 2.19  mg/
cm3 (p = 0.0256) with every one-year increase in age. 
Rate of change of BMD (mg/cm3 per year) was also nega-
tively related to age.

Discussion
This is the first study to report longitudinal changes in 
tarsal and metatarsal BMD in a group of individuals with 
DM and PN. We observed a decreasing rate of mean 
BMD (-1.57 mg/cm3 per year; -0.5% per year) and calca-
neal BMD (-2.03 mg/cm3 per year; -1% per year) change 
over three years (indicating BMD loss), with a range of 
rates of tarsal and metatarsal BMD change of -0.3% to 
-0.9% per year. Our study identified that mean BMD (mg/
cm3) and calcaneal BMD (mg/cm3) are lower in older 
individuals, and the rate of BMD loss is more rapid with 
advancing age. Previous studies on patients with DM 

Fig. 2 Box plot of (A) Bone mineral density (BMD) at all timepoints averaged for all bones, including tarsals and metatarsals and (B) for the 
calcaneus, alone. Bone mineral density (BMD) is in mg/cm3. T1: baseline; T2: 0.5 years; T3: 1.5 years; T4: 3–4 years

Table 2 Mean BMD and Calcaneal BMD by Group Assignment

Rate of mean BMD change reflects the averaged value of all tarsal and 
metatarsal bones
a mg/cm3 per year
b Standard Deviation (SD)

Group 
Assignment

Number of 
Participants

Rate of Mean 
BMD  Changea 
(SD)b

Rate of Calcaneal 
BMD  Changea 
(SD)b

Shoulder 31 ‑1.66 (1.73) ‑2.09 (1.62)

Foot 29 ‑1.46 (1.52) ‑1.96 (1.43)

Table 3 Rate of BMD Change for Individual Tarsals and 
Metatarsals (N = 60)

CI Confidence Interval
a mg/cm3; Standard Deviation (SD)
b mg/cm3 per year; Standard Error (SE)

Bone BMD  Meana ± SD Rate of BMD 
 Changeb 
(SE)

p-value 95% CI

1st Metatarsal 298 ± 54 ‑1.98 (0.79) 0.015* ‑3.57, ‑0.40

2nd Metatarsal 401 ± 66 ‑1.24 (1.07) 0.259 ‑3.38, 0.89

3rd Metatarsal 374 ± 60 ‑1.62 (0.92) 0.082 ‑3.46, 0.21

4th Metatarsal 365 ± 66 ‑1.53 (1.04) 0.149 ‑3.62, 0.57

5th Metatarsal 371 ± 70 ‑1.23 (0.95) 0.203 ‑3.14, 0.68

1st Cuneiform 272 ± 53 ‑1.54 (0.96) 0.115 ‑3.47, 0.39

2nd Cuneiform 315 ± 51 ‑1.38 (0.76) 0.074 ‑2.90, 0.14

3rd Cuneiform 259 ± 47 ‑0.97 (0.58) 0.103 ‑2.13, 0.20

Cuboid 202 ± 37 ‑1.25 (0.57) 0.032* ‑2.39, ‑0.11

Navicular 310 ± 58 ‑1.46 (0.86) 0.093 ‑3.18, 0.25

Talus 294 ± 49 ‑2.54 (0.68) 0.0005* ‑3.91, ‑1.17

Calcaneus 207 ± 41 ‑2.03 (0.53) 0.0004* ‑3.09, ‑0.96
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show a rate of calcaneus BMD change in the range of 
-0.5% per year to -2.5% per year [19, 36]. We observed a 
comparable rate of BMD change in calcaneus at -1% per 
year.

A recent study in healthy population shows asym-
metric BMD within individual bones of the foot [37], 
however, the present study is the first to report longitu-
dinal changes in BMD in all of the tarsal and metatarsal 
bones in patients with DM and PN. We observed simi-
lar but not significant differences between rates of BMD 
change in individual tarsals and metatarsals, with the 
talus showing the greatest rate of BMD change (-0.9% per 
year), while the third cuneiform showed the lowest rate 
of BMD change (-0.3% per year). Our aim was to investi-
gate whether rate of BMD change is similar between the 
tarsals and metatarsals, compared to the calcaneus, thus 
each participant in the study served as their own inter-
nal control. There was no difference in the rate of BMD 
change (mg/cm3 per year) of the calcaneus compared to 
any other foot bone, suggesting that the calcaneus could 
be used as an overall indicator of foot BMD. However, 
our sample of individuals with DM and PN did not have 
any occurrences of significant foot complications (i.e., 
non-healing ulceration, neuropathic Charcot arthropa-
thy or amputation) during the 3–4  years study period, 
therefore, we are unable to assess the utility of individual 
tarsal/metatarsal BMD monitoring for identification and 
prevention of foot complications. A prior study of bone 
changes in individuals with DM found that asymmetry 
in BMD changes from the left foot to the right foot was 
an indicator of Charcot deformity [27, 38]. It may be that 
asymmetrical BMD loss in individual tarsal and metatar-
sal bones could serve as an early indicator of loss of foot 
structural integrity. Future studies to elucidate the utility 
of screening for BMD changes in individual foot bones 
would be beneficial.

We also studied the effect of other personal factors 
on rate of BMD change and found that only age related 

to BMD and rate of BMD change. Greater PN severity, 
sex, physical activity, and statin use were not associated 
with rate of BMD change. Prior studies have reported a 
more rapid loss of mean BMD in females compared to 
men, which is counter to our findings [19, 39, 40]. Physi-
cal activity and body mass index (BMI) have also been 
shown to impact rate of BMD loss in a population of 
similarly aged women to those included in our study (60–
80 + years) [41]. We may not see similar effects of physi-
cal activity and BMI on rate of BMD change because the 
range of physical activity and BMI values may not be 
sufficient to explore this variable in our study. It is also 
possible that specific elements or methods of activity 
are more important than volume of activity, such as foot 
loading pattern, foot intrinsic muscle strength, or type of 
footwear. The current body of literature on exercise and 
rate of BMD change supports that body weight exercises 
in this age population can increase BMD in the hip and 
lumbar spine [42, 43], but no research has been com-
pleted on observing rate of foot BMD change with mild 
to moderate strength training in this population.

One limitation of our study is the limited severity of 
foot deformity and dysfunction in this sample of the 
population of individuals with DM and PN as reflected 
in absence of current ulceration at intake. More severe 
BMD changes may be observed in a population with a 
higher incidence of ulceration, fracture, or amputation. 
Second, there were missing data and variability in the 
timing of the  4th time point due to the COVID-19 pan-
demic, which resulted in a relatively small sample size. 
We have mitigated this variability in our statistical anal-
ysis, which assesses time from baseline as a continuous 
variable to account for any variation in timing of data 
collection. Third, current technology and methodology 
makes manual segmentation and BMD calculation for 
individual bones not viable for translation of our meas-
ures into a clinical setting. However, there is potential 
for future use of artificial intelligence to automate and 

Table 4 Effect of Personal Factors on Rate Mean BMD and Calcaneal BMD Change

*Statistically significant p-value; Female (F); Male (M); Yes (Y); No (N)

Personal Factors Number of 
Participants

Mean BMD Calcaneal BMD

Pearson correlation 
coefficient

p-value Pearson correlation 
coefficient

p-value

Sex (F/M) 60 0.043 0.7426 ‑0.095 0.4723

Michigan Neuropathy Screening 
Instrument Score

60 ‑0.158 0.2270 ‑0.182 0.1633

Age (years) 60 ‑0.282 0.0288* ‑0.322 0.0120*

Daily Step Count 35 ‑0.115 0.5118 ‑0.157 0.3689

Sedentary Time (minutes) 35 0.123 0.4799 0.042 0.8088

Statin Use (Y/N) 59 ‑0.056 0.6747 ‑0.131 0.3211
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streamline this process. This study adds to a growing 
body of literature demonstrating that volumetric quan-
titative computed tomography as a way of determining 
BMD for individual tarsals of the foot provides a more 
comprehensive picture of bone-by-bone health than 
previous methodologies and can serve as a framework 
for taking a more fine-tuned approach to monitoring 
foot bone health. Fourth, to track step count and seden-
tary time, ActiGraph data collection was added to the 
study after the study had begun, leading to missing T1 
data for the earlier participants. To address this miss-
ing data, incomplete ActiGraph data sets were omit-
ted from statistical analysis. Finally, BMD, although 
indicative of bone quantity, is a fairly blunt measure 
of bone quality. It is important to note that the annual 
BMD change reported in our study group does not 
exceed previously published values for least significant 
change using this imaging modality [27]. Small changes 
in BMD may not be detectable with currently avail-
able imaging modalities on an individual patient basis. 
Future work that includes the use of high resolution 
peripheral quantitative CT, will provide an important 
contribution to understanding the role of redistribu-
tion of BMD and changes in the microarchitecture of 
the cortical and trabecular bone, important for under-
standing bone quality and strength.

In summary, we observed individuals with DM and 
PN to lose BMD at rates comparable to those reported 
in non-diabetic individuals in the literature. Aging 
increased the rate of BMD loss. Rate of BMD loss was not 
significantly different across tarsal/metatarsal bones, and 
further study is warranted to identify if individuals with 
asymmetric bone loss in the foot are at risk of negative 
foot-related outcomes including foot deformity.
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