191 research outputs found

    Long-term viability of the northern anthracnose pathogen, Kabatiella caulivora, facilitates its transportation and spread

    Get PDF
    The conidia and resting hyphae of the northern anthracnose pathogen of Trifolium species, Kabatiella caulivora, were effectively carried by, and maintained long-term viability on, a range of materials, including metals, fabrics, woods and plastics. Conidia and hyphae became thick-walled and melanized with time. There were significant (P < 0.001) differences in conidia/resting hyphae survival between carrier materials and between temperature regimes. At 23 °C/8 °C day/night, conidia and resting hyphae remained viable on steel, corrugated iron, galvanized steel, all tested fabrics, wood and random mixed materials for up to 8 months. At 36 °C/14 °C day/night, conidia and resting hyphae remained viable for up to 8 months, but only on cotton, denim, fleece, silk, leather, paper, plastic and all wood materials. At 45 °C/15 °C day/night, conidia and resting hyphae remained viable up to 8 months only on fleece wool, Eucalyptus marginata (jarrah wood) and paper. There were significant differences between carrier materials in their abilities to retain conidia and resting hyphae after washing (P < 0.001). Metabolic activity was confirmed for conidia and resting hyphae recovered after 8 months and K. caulivora colonies successfully re-established on potato dextrose agar. Findings confirmed the critical importance of materials as long-term carriers of viable K. caulivora conidia and resting hyphae, highlighting the potential for spread of a highly virulent K. caulivora race within and outside Australia via farming equipment, clothing and other associated materials. Results also have wider biosecurity implications for the transportation of fungal-infested carrier materials previously considered as low risk

    Extended survival of Puccinia graminis f. sp. tritici urediniospores: implications for biosecurity and on-farm management

    Get PDF
    Puccinia graminis f. sp. tritici (Pgt), the causal organism of stem rust, is of global importance across wheat-growing countries. However, some epidemics commence without the obvious presence of ‘alternate’ or ‘green bridge’ hosts, suggesting urediniospores can survive in the absence of suitable host plants for many weeks. Testing a range of inert material types, including metals, plastics, fabrics and woods, highlighted a significant effect of material type and temperature on urediniospore viability (P < 0.001), with urediniospores remaining attached and viable on these materials (aluminium, paper, rubber, all fabric and all woods) for up to 365 days at 23/8 °C day/night. At 36/14 °C day/night, urediniospore viability was retained for a maximum of 300 days on denim and jute. Furthermore, at 45/15 °C day/night, urediniospores remained viable for a maximum of 180 days on cotton and jute. The frequency of recovery of attached urediniospores was also dependent upon the material type, with significant differences between materials in their abilities to retain urediniospores after washing (P < 0.001). Urediniospores recovered even after 300 or 365 days from the lower two temperature regimes successfully initiated infections of wheat seedlings. Results confirm the potential importance of inert materials as long-term carriers of viable Pgt urediniospores, highlighting risks of spread of new pathotypes and strains across wheat-growing regions, the significant biosecurity implications for contaminated carrier materials, and its likely survival across seasons without a host

    Management of root diseases of annual pasture legumes in Mediterranean ecosystems - a case study of subterranean clover root diseases in the south-west of Western Australia

    Get PDF
    Subterranean clover (Trifolium subterraneum) is an important component of Mediterranean dryland pasture ecosystems, such as in the south-west of Western Australia, where it is utilised as a winter annual pasture that provides nitrogen as well as disease breaks for rotational crops. Necrotrophic soil-borne fungal pathogens dominate Mediterranean ecosystems because of the ease of survival of these pathogens on infested residues over the dry summer period, and because of low levels of microbial competition in the impoverished and nutrient-defi cient soils characteristic of these regions that predisposes plants to root diseases. In addition to herbage and seed yield losses from soil-borne fungal and nematode pathogens, changes in botanical composition, in the number of regenerating plants, their persistence, and factors affecting feed quality are signifi cantly affected. Further, where the causal organisms of the diseases on subterranean clover are also common on other rotational crops, the impact of these soilborne pathogens appears far wider in Mediterranean ecosystems than previously considered. Under these conditions, soil-borne pathogens pose a serious threat to the productivity of this self-seeding pasture legume, to the extent that reseeding may become necessary. Pathogens such as Phytophthora clandestina, various Pythium species particularly Pythium irregulare, Aphanomyces sp., Rhizoctonia solani, one or more Fusarium species, Phoma medicaginis and Cylindrocarpon didymium are of concern, as are the nematode parasites from the genera Meloidogyne, Heterodera, Pratylenchus, Trichodorus and Radopholus. In this ecosystem, root pathogens operate together as disease complexes and the challenge therefore has been to source host genotypes with resistance to multiple pathogens. In addition to plant nutrition, environmental factors, in particular rainfall (soil moisture) and soil temperature, have a marked effect on both the disease severity caused by individual pathogens and on the interactions that occur between the different root pathogens. Approaches to disease control in this region include a range of management strategies. Cultural control strategies, including manipulation of grazing and rotations, offer some benefi ts. Manipulation of soil fertility also offers scope as this can enhance root physiology related to host resistance, overall plant growth and vigour, and also to improve the effective biological buffering against the pathogens. Fungicide treatments and manipulation of management practices may have a place in an integrated control system incorporating cultivars with useful resistance to root diseases. Clearly, host resistance offers the most cost-effective, long-term control, especially as resistance to several of these soil-borne pathogens has been identifi ed. The Mediterranean Basin, which is the centre of origin of this pasture legume, has proved to be a productive source of resistance to soil-borne necrotrophic pathogens and is likely to be a source of new subterranean clover cultivars

    Elementary excitations of trapped Bose gas in the large-gas-parameter regime

    Full text link
    We study the effect of going beyond the Gross-Pitaevskii theory on the frequencies of collective oscillations of a trapped Bose gas in the large gas parameter regime. We go beyond the Gross-Pitaevskii regime by including a higher-order term in the interatomic correlation energy. To calculate the frequencies we employ the sum-rule approach of many-body response theory coupled with a variational method for the determination of ground-state properties. We show that going beyond the Gross-Pitaevskii approximation introduces significant corrections to the collective frequencies of the compressional mode.Comment: 17 pages with 4 figures. To be published in Phys. Rev.

    Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

    Get PDF
    The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.Comment: 384 authors, 6 pages, 3 figures, and 1 table. Submitted to Phys. Rev. Lett. v2 has minor changes to match the submission version. Plain text data tables for the points plotted in the figures are publicly available at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg126_data.htm

    Measurement of Mass and Width of the W Boson at LEP

    Get PDF
    We report on measurements of the mass and total decay width of the W boson with the L3 detector at LEP. W-pair events produced in e+e−\mathrm{e^+e^-} interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in a data sample corresponding to a total luminosity of 76.7 pb−1^{-1}. Combining all final states in W-pair production, the mass and total decay width of the W boson are determined to be MW=80.61±0.15\mathrm{M_W}=80.61\pm0.15 GeV and ΓW=1.97±0.38\Gamma_{\mathrm{W}}=1.97\pm0.38 GeV, respectively

    Search for Heavy Neutral and Charged Leptons in e+^+e−^- Annihilation at s\sqrt{s} = 183 and 189 GeV

    Full text link
    A search for unstable neutral and charged heavy leptons as well as for stable charged heavy leptons is performed at center-of-mass energies s\sqrt{s} = 183 and 189 GeV with the L3 detector at LEP. No evidence for their existence is found. We exclude neutral heavy leptons which couple to the electron, muon or tau family, of the Dirac type for masses below 92.4, 93.3 and 83.3 GeV, and of the Majorana type for masses below 81.8, 84.1 and 73.5 GeV, respectively. We exclude unstable charged heavy leptons for masses below 93.9 GeV for a wide range of the associated neutral heavy lepton mass. If the unstable charged heavy lepton decays to a light neutrino, we exclude masses below 92.4 GeV. The production of stable charged heavy leptons with mass less than 93.5 GeV is also excluded

    Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at sqrt(s_NN)=200 GeV

    Full text link
    Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p_T, and eta points to cold nuclear matter effects arising at high parton densities.Comment: 381 authors, 6 pages, 4 figures. Published in Phys. Rev. Lett. (http://link.aps.org/doi/10.1103/PhysRevLett.107.172301). v3 has minor changes to match published version (http://www.phenix.bnl.gov/phenix/WWW/info/pp1/128/PhysRevLett.107.172301) Plain text data tables for points plotted in figures are publicly available at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg128_data.htm

    Measurement of an Elongation of the Pion Source in Z Decays

    Get PDF
    We measure Bose-Einstein correlations between like-sign charged pion pairs in hadronic Z decays with the L3 detector at LEP. The analysis is performed in three dimensions in the longitudinal center-of-mass system. The pion source is found to be elongated along the thrust axis with a ratio of transverse to longitudinal radius of 0.81±0.02−0.19+0.030.81\pm 0.02 ^{+0.03}_{-0.19}

    A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis

    Get PDF
    BackgroundFrequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions.ResultsWe first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on Enhancer(TRAM2), as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopies the YAP-induced cell proliferation, migration, and invasion phenotypes and correlates with poor patient survival. Mechanistically, we identify FSTL-1 as a major direct client of TRAM2 that is involved in these phenotypes. Thus, TRAM2 is a key novel mediator of YAP-induced oncogenic proliferation and cellular invasiveness.ConclusionsYAP is a transcription co-factor that binds to thousands of enhancer loci and stimulates tumor aggressiveness. Using unbiased functional approaches, we dissect YAP enhancer network and characterize TRAM2 as a novel mediator of cellular proliferation, migration, and invasion. Our findings elucidate how YAP induces cancer aggressiveness and may assist diagnosis of cancer metastasis.Cancer Signaling networks and Molecular Therapeutic
    • 

    corecore