54 research outputs found

    A phytolith supported biosphere-hydrosphere predictive model for Southern Ethiopia:Insights into paleoenvironmental changes and human landscape preferences since the last glacial maximum

    Get PDF
    During the past 25 ka, southern Ethiopia has undergone tremendous climatic changes, from dry and relatively cold during the Last Glacial Maximum (LGM, 25–18 ka) to the African Humid Period (AHP, 15–5 ka), and back to present-day dry conditions. As a contribution to better understand the effects of climate change on vegetation and lakes, we here present a new Predictive Vegetation Model that is linked with a Lake Balance Model and available vegetation-proxy records from southern Ethiopia including a new phytolith record from the Chew Bahir basin. We constructed a detailed paleo-landcover map of southern Ethiopia during the LGM, AHP (with and without influence of the Congo Air Boundary) and the modern-day potential natural landcover. Compared to today, we observe a 15–20% reduction in moisture availability during the LGM with widespread open landscapes and only few remaining forest refugia. We identify 25–40% increased moisture availability during the AHP with prevailing forests in the mid-altitudes and indications that modern anthropogenic landcover change has affected the water balance. In comparison with existing archaeological records, we find that human occupations tend to correspond with open landscapes during the late Pleistocene and Holocene in southern Ethiopia

    Archeological Significance Testing at 41BX17/271, the Granberg Site: A Multi-Component Site along the Salado Creek in Bexar County, Texas

    Get PDF
    The Center for Archaeological Research (CAR) of The University of Texas at San Antonio conducted archeological significance testing at 41BX17, the Granberg Site, from January to March 2006. The testing was conducted for the Texas Department of Transportation, Environmental Affairs Division (TxDOT-ENV). The Granberg Site sits on the eastern flood terrace of the Salado Creek south of Loop 410 in San Antonio, Bexar County, Texas. Planned road improvements including installation of a storm sewer line and a water main prompted the need to assess whether (1) cultural deposits including human remains still exist after previous testing and (2) if the deposits contribute to the site’s National Register of Historic Places eligibility. The archeological work was conducted under Texas Antiquities Permit No. 4010. Steve A. Tomka served as Principal Investigator and Jennifer Thompson served as Project Archeologist. Fieldwork included mechanical auger boring and backhoe trenching to determine the horizontal extent of the site boundaries within the median of Loop 410 eastbound. Sixteen 1-x-1-m units were excavated to determine the distribution and integrity of the cultural deposits and to locate any possible burials that may still exist at the site. Materials recovered included burned rock features, chipped stone artifacts, animal bone, snail and mussel shell and charred plant remains. The distribution of the artifacts, the geomorphic investigations, the radiocarbon assays, and temporally diagnostic artifacts indicate the presence of Middle and Late Archaic archeological materials with good stratigraphic integrity. The Granberg Site was determined to be ineligible for the National Register of Historic Places. Following the completion of eligibility testing efforts, the TxDOT directed the CAR to develop a research design linking the data recovered from the various excavations at the Granberg Site with research goals. The CAR developed the research design (Munoz et al. 2007) under Work Authorization No. 57513SA005 with Cynthia M. Munoz serving as Project Archeologist. At roughly the time of the research design implementation, the CAR was the recipient of a donation of a collection of commingled human skeletal remains recovered from the Granberg Site. These remains were recovered from 41BX17/271 in 1962 by Harvey Kohnitz, an avocational archeologist, without knowledge or permission from the Texas Highway Department. The remains were stored at the Kohnitz home until his son, Mark Kohnitz, donated them to the CAR in 2007. An osteological analysis was conducted at the CAR laboratory during February 2008 for TxDOT, under Work Authorization No. 57513SA005 Supplemental Work Authorization No. 4. The results of this analysis are reported in Appendix H of this report. The commingled remains will be curated the CAR and all required documents, including an inventory, will be submitted to the National Park Service National NAGPRA Program to fulfill all obligations pertaining to the NAGPRA laws. All artifacts collected during this project and all project-associated documentation are permanently curated at the CAR according to Texas Historical Commission guidelines

    Data Recovery Investigations: Murvaul Creek Site (41PN175), Panola County, Texas

    Get PDF
    This report summarizes the archeological findings of the 2011 data recovery investigations at the Murvaul Creek site, 41PN175, in far northeastern Texas in Panola County. The site is located along Farm-to-Market Road (FM) 10 approximately 1 mile north of Gary, Texas (Figure 1). Geo-Marine, Inc. (GMI), performed this work under contract to the Texas Department of Transportation, Environmental Affairs Division (TxDOT ENV) under the Texas Antiquities Permit Number 5879 (Work Authorization [WA] 579 06 SA005; WA 590 08 SA005; CSJ:1222-01-014; Geo-Marine project numbers 22005.00.06 and 22005.00.09). The fieldwork for this project was conducted in advance of the planned widening of FM 10 that was to replace three bridges and a culvert over Murvaul Creek with a larger structure and shift the road approximately 26 meters (m; 85 feet [ft]) to the east. Since the planned improvements of FM 10 would result in the loss of information at the Murvaul Creek site—a site that was recommended eligible for inclusion in the National Register of Historic Places (NRHP) and for designation as a State Antiquities Landmark (SAL; formerly State Archeological Landmark)—the current data recovery investigations were initiated. The data recovery investigations were conducted between February 7, 2011, and April 3, 2011. During this period, the fieldwork was conducted in several stages: site clearing, geophysical survey, 50-x-50-centimeter (cm) excavations, block excavations, and mechanical site scraping. With the exception of the site clearing stage, the results of each of the fieldwork stages are reviewed individually in this report. The investigations resulted in the documentation of numerous features that appeared to have been the remains of a small Middle-to-Late Caddo settlement or farmstead situated on the edge of an interfluve south of the Murvaul Creek floodplain. Additionally, materials pertaining to the Archaic period were documented across the site. Although the site has been intensively studied within the TxDOT right-of-way (ROW), both the current investigations and previous work were limited to the ROW (cf. Cliff and Perttula 2002). Hence, the site is very likely larger than has been adequately documented

    The Siren Site and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau of Central Texas

    Get PDF
    On behalf of the Texas Department of Transportation (TxDOT), SWCA Environmental Consultants (SWCA) conducted testing and data recovery investigations at the Siren site (41WM1126), a prehistoric multi-component site in the Interstate Highway 35 right-of-way along the South Fork of the San Gabriel River in Williamson County, Texas. The work was done to fulfill TxDOT’s compliance obligations under the National Historic Preservation Act and the Antiquities Code of Texas. The testing investigations were conducted under Antiquities Permit 3834, and the subsequent data recovery was under Permit 3938. Kevin Miller served as Principal Investigator on both permits. Though the site extends far beyond the area of potential effects both horizontally and vertically, the investigations focused on Late Archaic and Late Prehistoric components within a relatively limited area that would be subject to project impacts. The investigations were conducted in February 2006. The investigations identified five isolable components that were intermittently laid down from approximately 2600 to 900 years ago. A substantial Late Prehistoric Austin phase occupation is represented by Scallorn projectile points, stone tools, burned rock, faunal materials, and radiocarbon dates from cooking features. The component feature assemblage includes a cluster of discrete, well-preserved burned rock features that range from small fire-cracked rock concentrations to a large, slab-lined feature that dominates the cluster. The underlying components include four cultural strata representing a series of phases in the final millennium or so of the long Archaic period. These components span approximately 2600 to 1500 b.p., though earlier, deeply buried components were also noted on the site. These deeper deposits were not the focus of the investigations, however, since they would not be affected by the project. The Archaic components revealed a suite of small side-notched dart points such as Ensor, Fairland, and Frio, as well as many earlier broad-bladed styles such as Castroville, Montell, Marshall, and Pedernales. These robust components contained numerous burned rock features of varying size and function, abundant tools, well-preserved faunal materials, macrobotanical remains including geophytes from several earth ovens, and a large suite of radiocarbon dates. The features include an incipient burned rock midden, burned rock clusters, a debitage reduction area, a biface cache, slab-lined hearths, basin-shaped hearths, and small circular hearths. The distributions of artifacts and features within the Archaic components across the excavation blocks showed significant variations. These differences reflect sequential components that provide a view of diachronic trends in technology, subsistence, economy, and a suite of other behaviors and activities during the long transition from Archaic to Late Prehistoric adaptations. As previously determined by the testing excavations and further substantiated by the data recovery investigations, the Siren site, most notably the Late Archaic and Late Prehistoric components, is eligible for the National Register of Historic Places under Criterion D, 36 CFR 60.4, and eligible for State Archeological Landmark designation under Criteria 1 and 2 of the Rules of Practice and Procedure for the Antiquities Code of Texas, 13 TAC 26.8. The excavations and subsequent analysis have mitigated the adverse effects of the bridge construction by recovering the vast majority of the affected components within the area of potential effect. No further archaeological work is recommended. Portions of the site outside the area of potential effects have not been fully evaluated, and any future impacts beyond the mitigated areas warrant further assessment

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    A Phytolith Supported Biosphere-Hydrosphere Predictive Model for Southern Ethiopia: Insights into Paleoenvironmental Changes and Human Landscape Preferences since the Last Glacial Maximum

    No full text
    Southern Ethiopia has undergone tremendous climatic changes, from dry and relatively cold during the Last Glacial Maximum (LGM, 25–18 ka) to the African Humid Period (AHP, 15–5 ka), and back to present-day dry conditions. As a contribution to better understand the effects of climate change on vegetation and lakes, we here present a Predictive Vegetation Model that is linked with a Lake Balance Model and available vegetation-proxy records from southern Ethiopia including a new phytolith record from the Chew Bahir basin. We constructed a detailed paleo-landcover map of southern Ethiopia during the LGM, AHP (with and without influence of the Congo Air Boundary) and the modern-day potential natural landcover. Compared to today, we observe a 15–20% reduction in moisture availability during the LGM with widespread open landscapes and only few remaining forest refugia. We identify 25–40% increased moisture availability during the AHP with prevailing forests in the mid-altitudes. In comparison with existing archaeological records, we find that human occupations tend to correspond with open landscapes during the late Pleistocene and Holocene in southern Ethiopia. Furthermore, we see indications that modern anthropogenic landcover change has affected the water balance
    corecore