138 research outputs found

    Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Get PDF
    Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps

    A GC polymorphism associated with serum 25-hydroxyvitamin D level is a risk factor for hip fracture in Japanese patients with rheumatoid arthritis: 10-year follow-up of the Institute of Rheumatology, Rheumatoid Arthritis cohort study

    Get PDF
    INTRODUCTION: Vitamin D deficiency has been reported to be common in patients with rheumatoid arthritis (RA) who have a higher prevalence of osteoporosis and hip fracture than healthy individuals. Genetic variants affecting serum 25-hydroxyvitamin D (25(OH)D) concentration, an indicator of vitamin D status, were recently identified by genome-wide association studies of Caucasian populations. The purpose of this study was to validate the association and to test whether the serum 25(OH)D-linked genetic variants were associated with the occurrence of hip fracture in Japanese RA patients. METHODS: DNA samples of 1,957 Japanese RA patients were obtained from the Institute of Rheumatology, Rheumatoid Arthritis (IORRA) cohort DNA collection. First, five single nucleotide polymorphisms (SNPs) that were reported to be associated with serum 25(OH)D concentration by genome-wide association studies were genotyped. The SNPs that showed a significant association with serum 25(OH)D level in the cross-sectional study were used in the longitudinal analysis of hip fracture risk. The genetic risk for hip fracture was determined by a multivariate Cox proportional hazards model in 1,957 patients with a maximum follow-up of 10 years (median, 8 years). RESULTS: Multivariate linear regression analyses showed that rs2282679 in GC (the gene encoding group-specific component (vitamin D binding protein)) locus was significantly associated with lower serum 25(OH)D concentration (P = 8.1 × 10(-5)). A Cox proportional hazards model indicated that rs2282679 in GC was significantly associated with the occurrence of hip fracture in a recessive model (hazard ratio (95% confidence interval) = 2.52 (1.05-6.05), P = 0.039). CONCLUSIONS: A two-staged analysis demonstrated that rs2282679 in GC was associated with serum 25(OH)D concentration and could be a risk factor for hip fracture in Japanese RA patients

    Understanding controls on biotic assemblages and ecological status in Zambian rivers for the development of sustainable monitoring protocols

    Get PDF
    We search for galaxies with a strong Balmer break (Balmer Break Galaxies; BBGs) at z6z \sim 6 over a 0.41 deg2^2 effective area in the COSMOS field. Based on rich imaging data, including data obtained with the Atacama Large Millimeter/submillimeter Array (ALMA), three candidates are identified by their extremely red K[3.6]K - [3.6] colors as well as by non-detection in X-ray, optical, far-infrared (FIR), and radio bands. The non-detection in the deep ALMA observations suggests that they are not dusty galaxies but BBGs at z6z \sim 6, although contamination from Active Galactic Nuclei (AGNs) at z0z \sim 0 cannot be completely ruled out for the moment. Our spectral energy distribution (SED) analyses reveal that the BBG candidates at z6z \sim 6 have stellar masses of 5×1010M\approx 5 \times 10^{10} M_{\odot} dominated by old stellar populations with ages of 700\gtrsim 700 Myr. Assuming that all the three candidates are real BBGs at z6z \sim 6, we estimate the stellar mass density (SMD) to be 2.41.3+2.3×104M2.4^{+2.3}_{-1.3} \times 10^{4} M_{\odot} Mpc3^{-3}. This is consistent with an extrapolation from the lower redshift measurements. The onset of star formation in the three BBG candidates is expected to be several hundred million years before the observed epoch of z6z \sim 6. We estimate the star-formation rate density (SFRD) contributed by progenitors of the BBGs to be 2.4 -- 12 ×105M\times 10^{-5} M_{\odot} yr1^{-1} Mpc3^{-3} at z>14z > 14 (99.7\% confidence range). Our result suggests a smooth evolution of the SFRD beyond z=8z = 8.Comment: 29 pages, 16 figures, 4 tables, accepted for publication in Ap

    Balmer Break Galaxy Candidates at z ∼ 6: A Potential View on the Star Formation Activity at z ≳ 14

    Get PDF
    We search for galaxies with a strong Balmer break (Balmer break galaxies; BBGs) at z ~ 6 over a 0.41 deg² effective area in the COSMOS field. Based on rich imaging data, including data obtained with the Atacama Large Millimeter/submillimeter Array (ALMA), three candidates are identified by their extremely red K–[3.6] colors, as well as by nondetection in the X-ray, optical, far-infrared, and radio bands. The nondetection in the deep ALMA observations suggests that they are not dusty galaxies but BBGs at z ~ 6, although contamination from active galactic nuclei at z ~ 0 cannot be completely ruled out for the moment. Our spectral energy distribution analyses reveal that the BBG candidates at z ~ 6 have stellar masses of ≈5 × 10¹⁰ M_⊙ dominated by old stellar populations with ages of ≳ 700 Myr. Assuming that all three candidates are real BBGs at z ~ 6, we estimate the stellar mass density to be 2.4_(-1.3)^(+2.3) x {10⁴ M_⊙ Mpc⁻³. This is consistent with an extrapolation from the lower-redshift measurements. The onset of star formation in the three BBG candidates is expected to be several hundred million yr before the observed epoch of z ~ 6. We estimate the star formation rate density (SFRD) contributed by progenitors of the BBGs to be 2.4–12 × 10⁻⁵ M_⊙ yr⁻¹ Mpc⁻³ at z > 14 (99.7% confidence range). Our result suggests a smooth evolution of the SFRD beyond z = 8

    Endoscopic therapy using an endoscopic variceal ligation for minute cancer of the esophagogastric junction complicated with esophageal varices: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Standard endoscopic mucosal resection or endoscopic submucosal dissection is a procedure for patients with minute cancers, complicated with esophageal varices that puts them at high risk of bleeding.</p> <p>Case presentation</p> <p>We present the case of a 77-year-old Japanese man with alcoholic cirrhosis who underwent a routine endoscopy examination as a screening procedure for esophageal varices and was incidentally diagnosed as having minute cancer of the esophagogastric junction with esophageal varices. Endoscopic ultrasonography findings suggested that the minute cancer was a non-invasive carcinoma (carcinoma <it>in situ</it>) and a 2 mm in diameter blood vessel, feeding the esophageal varices, pierced the lesion. Following the examination, we carried out endoscopic treatment of the minute cancer and esophageal varices. Endoscopic variceal ligation was performed using a pneumo-activated device (Sumitomo Bakelite, Tokyo, Japan). Two years after the treatment, during the follow-up endoscopic examination on the patient, recurrence of carcinoma was not detected endoscopically or histologically.</p> <p>Conclusion</p> <p>Endoscopic therapy using an endoscopic variceal ligation device for minute cancer of the esophagogastric junction, complicated with esophageal varices, may be an acceptable and easily applicable method.</p

    Muscle mass, quality, and strength; physical function and activity; and metabolic status in cachectic patients with head and neck cancer

    Get PDF
    Background & aims: Cancer cachexia is commonly associated with poor prognosis in patients with head and neck cancer (HNC). However, its pathophysiology and treatment are not well established. The current study aimed to assess the muscle mass/quality/strength, physical function and activity, resting energy expenditure (REE), and respiratory quotient (RQ) in cachectic patients with HNC. Methods: This prospective cross-sectional study analyzed 64 patients with HNC. Body composition was measured via direct segmental multifrequency bioelectrical impedance analysis, and muscle quality was assessed using echo intensity on ultrasonography images. Muscle strength was investigated utilizing handgrip strength and isometric knee extension force (IKEF). Physical function was evaluated using the 10-mwalking speed test and the five times sit-to-stand (5-STS) test. Physical activity was examined using a wearable triaxial accelerometer. REE and RQ were measured via indirect calorimetry. These parameters were compared between the cachectic and noncachectic groups. Results: In total, 23 (36%) patients were diagnosed with cachexia. The cachectic group had a significantly lower muscle mass than the noncachectic group. Nevertheless, there was no significant difference in terms of fat between the two groups. The cachectic group had a higher quadriceps echo intensity and a lower handgrip strength and IKEF than the noncachectic group. Moreover, they had a significantly slower normal and maximum walking speed and 5 STS speed. The number of steps, total activity time, and time of activity (<3 Mets) did not significantly differ between the two groups. The cachectic group had a shorter time of activity (≥3 Mets) than the noncachectic group. Furthermore, the cachectic group had a significantly higher REE/body weight and REE/fat free mass and a significantly lower RQ than the noncachectic group. Conclusions: The cachectic group had a lower muscle mass/quality/strength and physical function and activity and a higher REE than the noncachectic group. Thus, REE and physical activity should be evaluated to determine energy requirements. The RQ was lower in the cachectic group than that in the noncachectic group, indicating changes in energy substrate. Further studies must be conducted to examine effective nutritional and exercise interventions for patients with cancer cachexia

    Cryogenic deuterium target experiments with the GEKKO XII, green laser system

    Full text link
    Copyright 1995 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 2(6), 2495-2503, 1995 and may be found at http://dx.doi.org/10.1063/1.87121

    An Integrated High-density Linkage Map of Soybean with RFLP, SSR, STS, and AFLP Markers Using A Single F2 Population

    Get PDF
    Soybean [Glycine max (L.) Merrill] is the most important leguminous crop in the world due to its high contents of high-quality protein and oil for human and animal consumption as well as for industrial uses. An accurate and saturated genetic linkage map of soybean is an essential tool for studies on modern soybean genomics. In order to update the linkage map of a F2 population derived from a cross between Misuzudaizu and Moshidou Gong 503 and to make it more informative and useful to the soybean genome research community, a total of 318 AFLP, 121 SSR, 108 RFLP, and 126 STS markers were newly developed and integrated into the framework of the previously described linkage map. The updated genetic map is composed of 509 RFLP, 318 SSR, 318 AFLP, 97 AFLP-derived STS, 29 BAC-end or EST-derived STS, 1 RAPD, and five morphological markers, covering a map distance of 3080 cM (Kosambi function) in 20 linkage groups (LGs). To our knowledge, this is presently the densest linkage map developed from a single F2 population in soybean. The average intermarker distance was reduced to 2.41 from 5.78 cM in the earlier version of the linkage map. Most SSR and RFLP markers were relatively evenly distributed among different LGs in contrast to the moderately clustered AFLP markers. The number of gaps of more than 25 cM was reduced to 6 from 19 in the earlier version of the linkage map. The coverage of the linkage map was extended since 17 markers were mapped beyond the distal ends of the previous linkage map. In particular, 17 markers were tagged in a 5.7 cM interval between CE47M5a and Satt100 on LG C2, where several important QTLs were clustered. This newly updated soybean linkage map will enable to streamline positional cloning of agronomically important trait locus genes, and promote the development of physical maps, genome sequencing, and other genomic research activities

    Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

    Get PDF
    Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research
    corecore