1,366 research outputs found

    The particle-in-cell model for ab initio thermodynamics: implications for the elastic anisotropy of the Earth's inner core

    Full text link
    We assess the quantitative accuracy of the particle-in-cell (PIC) approximation used in recent ab initio predictions of the thermodynamic properties of hexagonal-close-packed iron at the conditions of the Earth's inner core. The assessment is made by comparing PIC predictions for a range of thermodynamic properties with the results of more exact calculations that avoid the PIC approximation. It is shown that PIC gives very accurate results for some properties, but that it gives an incorrect treatment of anharmonic lattice vibrations. In addition, our assessment does not support recent PIC-based predictions that the hexagonal c/a ratio increases strongly with increasing temperature, and we point out that this casts doubt on a proposed re-interpretation of the elastic anisotropy of the inner core.Comment: 25 pages, 9 figures, submitted to Physics of the Earth and Planetary Interior

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    Markerless monocular tracking system for guided external eye surgery

    Full text link
    This paper presents a novel markerless monocular tracking system aimed at guiding ophthalmologists during external eye surgery. This new tracking system performs a very accurate tracking of the eye by detecting invariant points using only textures that are present in the sclera, i.e., without using traditional features like the pupil and/or cornea reflections, which remain partially or totally occluded in most surgeries. Two known algorithms that compute invariant points and correspondences between pairs of images were implemented in our system: Scalable Invariant Feature Transforms (SIFT) and Speed Up Robust Features (SURF). The results of experiments performed on phantom eyes show that, with either algorithm, the developed system tracks a sphere at a 360◦ rotation angle with an error that is lower than 0.5%. Some experiments have also been carried out on images of real eyes showing promising behavior of the system in the presence of blood or surgical instruments during real eye surgery. © 2014 Elsevier Ltd. All rights reserved.Monserrat Aranda, C.; Rupérez Moreno, MJ.; Alcañiz Raya, ML.; Mataix, J. (2014). Markerless monocular tracking system for guided external eye surgery. Computerized Medical Imaging and Graphics. 38(8):785-792. doi:10.1016/j.compmedimag.2014.08.001S78579238

    An Enhanced Electrocardiogram biometric authentication system using machine learning

    Get PDF
    Traditional authentication systems use alphanumeric or graphical passwords, or token-based techniques that require “something you know and something you have”. The disadvantages of these systems include the risks of forgetfulness, loss, and theft. To address these shortcomings, biometric authentication is rapidly replacing traditional authentication methods and is becoming an everyday part of life. The electrocardiogram (ECG) is one of the most recent traits considered for biometric purposes, and three typical use cases have been described: security checks, hospitals and wearable devices. Here we describe an ECG-based authentication system suitable for security checks and hospital environments. The proposed authentication system will help investigators studying ECG-based biometric authentication techniques to define dataset boundaries and to acquire high-quality training data. We evaluated the performance of the proposed system using a confusion matrix and also by applying the Amang ECG (amgecg) toolbox in MATLAB to investigate two parameters that directly affect the accuracy of authentication: the ECG slicing time (sliding window) and sampling time. Using this approach, we found that accuracy was optimized by using a sliding window of 0.4 s and a sampling time of 37 s

    Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems

    Get PDF
    We present a method for measuring single spins embedded in a solid by probing two electron systems with a single electron transistor (SET). Restrictions imposed by the Pauli Principle on allowed two electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and small textual changes. Submitted to Phys. Rev.

    The glassy response of solid He-4 to torsional oscillations

    Full text link
    We calculated the glassy response of solid He-4 to torsional oscillations assuming a phenomenological glass model. Making only a few assumptions about the distribution of glassy relaxation times in a small subsystem of otherwise rigid solid He-4, we can account for the magnitude of the observed period shift and concomitant dissipation peak in several torsion oscillator experiments. The implications of the glass model for solid He-4 are threefold: (1) The dynamics of solid He-4 is governed by glassy relaxation processes. (2) The distribution of relaxation times varies significantly between different torsion oscillator experiments. (3) The mechanical response of a torsion oscillator does not require a supersolid component to account for the observed anomaly at low temperatures, though we cannot rule out its existence.Comment: 9 pages, 4 figures, presented at QFS200

    Influence of a classical homogeneous gravitational field on dissipative dynamics of the Jaynes-Cummings model with phase damping

    Get PDF
    In this paper, we study the dissipative dynamics of the Jaynes-Cummings model with phase damping in the presence of a classical homogeneous gravitational field. The model consists of a moving two-level atom simultaneously exposed to the gravitational field and a single-mode traveling radiation field in the presence of the phase damping. We present a quantum treatment of the internal and external dynamics of the atom based on an alternative su(2) dynamical algebraic structure. By making use of the super-operator technique, we obtain the solution of the master equation for the density operator of the quantum system, under the Markovian approximation. Assuming that initially the radiation field is prepared in a Glauber coherent state and the two-level atom is in the excited state, we investigate the influence of gravity on the temporal evolution of collapses and revivals of the atomic population inversion, atomic dipole squeezing, atomic momentum diffusion, photon counting statistics and quadrature squeezing of the radiation field in the presence of phase damping.Comment: 25 pages, 15 figure

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc
    corecore