191 research outputs found

    Specific primers for the detection of freshwater alphaproteobacterial magnetotactic cocci

    Get PDF
    Freshwater magnetotactic cocci within Alphaproteobacteria are of ecological interest due to their ubiquitous distribution in aquatic environments as well as their potential roles in iron cycling and the bulk magnetism of sediment. To effectively investigate the diversity and distribution of these cocci, specific primers (FMTCf and FMTCr) were developed. Their specificity, applicability, and effectiveness were then evaluated theoretically and empirically. [Int Microbiol 2009; 12(4):237-242

    Norovirus GII.17: The Emergence and Global Prevalence of a Novel Variant

    Get PDF
    A rare norovirus (NoV) genotype GII.17 has recently emerged and rapidly became predominant in most East Asian countries in the winters of 2014–2015. In this study, we report the diversity of NoV GII.17 in detail; a total of 646 GII.17 sequences obtained during 1978–2015 were analyzed and subjected to meta-analysis. At least five major recombinant GII.17 clusters were identified. Each recombinant variant group appeared to have emerged following the time order: GII.P4-GII.17 (1978–1990), GII.P16-GII.17 (2001–2004), GII.P13-GII.17 (2004–2010), GII.Pe-GII.17 (2012–2015) and GII.P3-GII.17 (2011–2015). The newly emerged GII.P3-GII.17 variant, which exhibited significant sequence and structure variations, is evolving toward a unique lineage. Our results indicate that circulation of GII.17 appears to change every 3–5 years due to replacement by a newly emerged variant and that the evolution of GII.17 is sequentially promoted by inter-genotype recombination, which contributes to the exchange between non-GII.17 and GII.17 RdRp genes and drives the evolution of GII.17 capsid genes

    Magnetosome Gene Duplication as an Important Driver in the Evolution of Magnetotaxis in the Alphaproteobacteria

    Get PDF
    The evolution of microbial magnetoreception (or magnetotaxis) is of great interest in the fields of microbiology, evolutionary biology, biophysics, geomicrobiology, and geochemistry. Current genomic data from magnetotactic bacteria (MTB), the only prokaryotes known to be capable of sensing the Earth’s geomagnetic field, suggests an ancient origin of magnetotaxis in the domain Bacteria. Vertical inheritance, followed by multiple independent magnetosome gene cluster loss, is considered to be one of the major forces that drove the evolution of magnetotaxis at or above the class or phylum level, although the evolutionary trajectories at lower taxonomic ranks (e.g., within the class level) remain largely unstudied. Here we report the isolation, cultivation, and sequencing of a novel magnetotactic spirillum belonging to the genus Terasakiella (Terasakiella sp. strain SH-1) within the class Alphaproteobacteria. The complete genome sequence of Terasakiella sp. strain SH-1 revealed an unexpected duplication event of magnetosome genes within the mamAB operon, a group of genes essential for magnetosome biomineralization and magnetotaxis. Intriguingly, further comparative genomic analysis suggests that the duplication of mamAB genes is a common feature in the genomes of alphaproteobacterial MTB. Taken together, with the additional finding that gene duplication appears to have also occurred in some magnetotactic members of the Deltaproteobacteria, our results indicate that gene duplication plays an important role in the evolution of magnetotaxis in the Alphaproteobacteria and perhaps the domain Bacteria

    Bulk magnetic domain stability controls paleointensity fidelity

    Get PDF
    Nonideal, nonsingle-domain magnetic grains are ubiquitous in rocks; however, they can have a detrimental impact on the fidelity of paleomagnetic records—in particular the determination of ancient magnetic field strength (paleointensity), a key means of understanding the evolution of the earliest geodynamo and the formation of the solar system. As a consequence, great effort has been expended to link rock magnetic behavior to paleointensity results, but with little quantitative success. Using the most comprehensive rock magnetic and paleointensity data compilations, we quantify a stability trend in hysteresis data that characterizes the bulk domain stability (BDS) of the magnetic carriers in a paleomagnetic specimen. This trend is evident in both geological and archeological materials that are typically used to obtain paleointensity data and is therefore pervasive throughout most paleomagnetic studies. Comparing this trend to paleointensity data from both laboratory and historical experiments reveals a quantitative relationship between BDS and paleointensity behavior. Specimens that have lower BDS values display higher curvature on the paleointensity analysis plot, which leads to more inaccurate results. In-field quantification of BDS therefore reflects low-field bulk remanence stability. Rapid hysteresis measurements can be used to provide a powerful quantitative method for preselecting paleointensity specimens and postanalyzing previous studies, further improving our ability to select high-fidelity recordings of ancient magnetic fields. BDS analyses will enhance our ability to understand the evolution of the geodynamo and can help in understanding many fundamental Earth and planetary science questions that remain shrouded in controversy

    Focusing particles by induced charge electrokinetic flow in a microchannel

    Get PDF
    This is the peer reviewed version of the following article: Song, Y., Wang, C., Li, M., Pan, X. and Li, D. (2016), Focusing particles by induced charge electrokinetic flow in a microchannel. ELECTROPHORESIS, 37: 666–675. doi:10.1002/elps.201500361, which has been published in final form at http://dx.doi.org/10.1002/elps.201500361. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A novel method of sheathless particle focusing by induced charge electrokinetic flow in a microchannel is presented in this paper. By placing a pair of metal plates on the opposite walls of the channel and applying an electrical field, particle focusing is achieved due to the two pairs of vortex that constrain the flow of the particle solution. As an example, the trajectories of particles under different electrical fields with only one metal plate on one side channel wall were numerically simulated and experimentally validated. Other flow focusing effects, such as the focused width ratio (focused width/channel width) and length ratio (focused length/half-length of metal plate) of the sample solution, were also numerically studied. The results show that the particle firstly passes through the gaps between the upstream vortices and the channel walls. Afterwards, the particle is focused to pass through the gap between the two downstream vortices that determine the focused particle position. Numerical simulations show that the focused particle stream becomes thin with the increases in the applied electrical field and the length of the metal plates. As regards to the focused length ratio of the focused stream, however, it slightly increases with the increase in the applied electrical field and almost keeps constant with the increase in the length of the metal plate. The size of the focused sample solution, therefore, can be easily adjusted by controlling the applied electrical field and the sizes of the metal plates

    Preference-aware task assignment in on-demand taxi dispatching: An online stable matching approach

    Get PDF
    A central issue in on-demand taxi dispatching platforms is task assignment, which designs matching policies among dynamically arrived drivers (workers) and passengers (tasks). Previous matching policies maximize the profit of the platform without considering the preferences of workers and tasks (e.g., workers may prefer high-rewarding tasks while tasks may prefer nearby workers). Such ignorance of preferences impairs user experience and will decrease the profit of the platform in the long run. To address this problem, we propose preference-aware task assignment using online stable matching. Specifically, we define a new model, Online Stable Matching under Known Identical Independent Distributions (OSM-KIID). It not only maximizes the expected total profits (OBJ-1), but also tries to satisfy the preferences among workers and tasks by minimizing the expected total number of blocking pairs (OBJ-2). The model also features a practical arrival assumption validated on real-world dataset. Furthermore, we present a linear program based online algorithm LP-ALG, which achieves an online ratio of at least 1−1/e on OBJ-1 and has at most 0.6·|E| blocking pairs expectedly, where |E| is the total number of edges in the compatible graph. We also show that a natural Greedy can have an arbitrarily bad performance on OBJ-1 while maintaining around 0.5·|E| blocking pairs. Evaluations on both synthetic and real datasets confirm our theoretical analysis and demonstrate that LP-ALG strictly dominates all the baselines on both objectives when tasks notably outnumber workers

    An Image Dataset for Benchmarking Recommender Systems with Raw Pixels

    Full text link
    Recommender systems (RS) have achieved significant success by leveraging explicit identification (ID) features. However, the full potential of content features, especially the pure image pixel features, remains relatively unexplored. The limited availability of large, diverse, and content-driven image recommendation datasets has hindered the use of raw images as item representations. In this regard, we present PixelRec, a massive image-centric recommendation dataset that includes approximately 200 million user-image interactions, 30 million users, and 400,000 high-quality cover images. By providing direct access to raw image pixels, PixelRec enables recommendation models to learn item representation directly from them. To demonstrate its utility, we begin by presenting the results of several classical pure ID-based baseline models, termed IDNet, trained on PixelRec. Then, to show the effectiveness of the dataset's image features, we substitute the itemID embeddings (from IDNet) with a powerful vision encoder that represents items using their raw image pixels. This new model is dubbed PixelNet.Our findings indicate that even in standard, non-cold start recommendation settings where IDNet is recognized as highly effective, PixelNet can already perform equally well or even better than IDNet. Moreover, PixelNet has several other notable advantages over IDNet, such as being more effective in cold-start and cross-domain recommendation scenarios. These results underscore the importance of visual features in PixelRec. We believe that PixelRec can serve as a critical resource and testing ground for research on recommendation models that emphasize image pixel content. The dataset, code, and leaderboard will be available at https://github.com/westlake-repl/PixelRec
    • …
    corecore