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[1] The process of data selection in paleointensity studies is an essential step to ensure data fidelity. There is,
however, no consensus as to the best approach to consistently select data with most studies using arbitrarily
defined thresholds for selection. We present a new numerical model that simulates the variability of paleoin-
tensity data from hypothetical ideal samples acquiring a thermoremanent magnetization (TRM) by incorpo-
rating experimental noise, which has been constrained using over 75,000 data measurements. Using Monte
Carlo analyses, we investigate the behavior of simulated data and characterize the distributions of parameters
typically used to select paleointensity data. We use the 95th percentiles of the distributions to define thresh-
olds for the maximum likely parameter values that can result from experimental noise. These represent values
below which we cannot distinguish non-ideal behavior from noise. We find that a number of parameters are
highly sensitive to noise and laboratory field strength (e.g., partial TRM, pTRM, check CDRAT and pTRM
tail check dt*); this sensitivity may diminish their ability to identify non-ideal behavior. The fractional ( f )
dependence of some parameters and the proportion of inaccurate results provide justification for f ≥ 0.35
when selecting data from both Thellier-Thellier and Coe protocol experiments. The manifestation of noise
in the original Thellier method, however, is different to that of methods that use zero-field heating steps. This
suggests that the data selection procedure for the Thellier method should be different, but it also suggests that,
contrary to previous analyses, the accuracy and scatter of results from this method are more sensitive to noise
than methods that use zero-field heating steps. The general approach taken here is shown to be a powerful
means of understanding the behavior of selection parameters and has the potential to be extended to models
incorporating non-ideal behavior resulting from alteration and multidomain grains.
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1. Introduction

[2] Developing long-term records of geomagnetic
field variation is fundamental to understanding
geodynamo evolution. Determining the absolute
paleointensity of the ancient geomagnetic field,
however, is difficult and time consuming, and
experiments are prone to high failure rates. This
has been the motivation behind an increase in
efforts to understand and detect the causes of
paleointensity failure [e.g., Krása et al., 2003;
Leonhardt et al., 2004; Biggin et al., 2007; Draeger
et al., 2006; Yu and Tauxe, 2006; Fabian, 2009].

[3] During a paleointensity experiment a samples
natural remanent magnetization (NRM) is progres-
sively replaced by a laboratory thermoremanent
magnetization (TRM), which is acquired in a
magnetic field of known strength. The ratio of the
NRM-to-TRM gives us an estimate of the ratio of
the ancient-to-laboratory field strength. Causes of
paleointensity failure are broadly termed as “non-
ideal” behavior and may include, but are not limited
to, NRM that is not of thermal origin, magnetomi-
neralogical alteration (in nature or during labora-
tory heating), the presence of large magnetic grains
within a sample, non-linear TRM acquisition, or
anisotropy of TRM. As our understanding of non-
ideal behavior has progressed, new checks and
selection criteria have been developed to identify
and reject non-ideal behavior [e.g., Riisager and
Riisager, 2001; Krása et al., 2003; Paterson,
2011]. Defining appropriate thresholds for these
checks to facilitate the detection and exclusion of
non-ideal behavior is a key aim in paleointensity
studies, but one that has yet to be fully realized.

[4] Numerical models are an increasingly used tool
to characterize and understand paleointensity data
[e.g., Fabian, 2001; Leonhardt et al., 2004; Biggin,
2006; Fabian, 2009], but existing models do not
predict the high degree of variability that is seen
in real paleointensity data. In this study we have

developed a phenomenological paleointensity model
to investigate the variability of data obtained from
hypothetical ideal single domain (SD) samples as a
result of random noise being introduced during the
various stages of the paleointensity experiment. The
incorporation of experimental noise into the results
from ideal samples allows us to define lower
threshold values for parameters designed to identify
non-ideal behavior (i.e., threshold values below
which non-ideal behavior cannot be distinguished
from background noise). This, in turn, allows us to
place the selection of paleointensity data on a less
arbitrary footing, which makes the selection process
more effective and ensures that the results of
paleointensity studies are more reliable.

[5] In section 2, we give detailed descriptions of the
sources and magnitudes of experimental noise that
may affect a paleointensity experiment and outline
the data used to constrain this. Paleointensity theory
and the approach used to model data from ideal
samples are outlined in section 3, as well as how
experimental noise is incorporated into the model.
The effects of experimental noise on two samples with
contrasting demagnetization behavior are investigated
in section 4 and in section 5 we describe how exper-
imental noise influences various parameters used to
select paleointensity data.

2. The Sources and Magnitudes
of Experimental Noise

[6] There are a number of potential sources of
experimental noise that can influence a paleoin-
tensity experiment (e.g., temperature uncertainties,
measurement uncertainties). The main sources of
experimental noise incorporated into this model are
described below and summarized in Table 1. Given
that noise is a statistical phenomenon it is necessary
to define the probability density function (PDF) of a
particular noise source and, where possible, this has
been achieved using experimental data. For many
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sources of experimental noise normality can be
assumed (details given below) and the PDFs can be
described as standard deviations about a mean
value. Where estimates of the standard deviation
are made from experimental data, values have been
corrected for sample size [e.g., Holtzman, 1950].

2.1. Temperature Uncertainties

2.1.1. Repeat Heating

[7] A paleointensity experiment involves multiple
heatings to the same temperature and the reproduc-
ibility of the repeat heatings can have an effect on the
data obtained, particularly over a temperature range
where remanence is rapidly lost or gained. Detailed
temperature measurements during heating and cool-
ing of the Natsuhara-Giken TDS-1 thermal demag-
netizers at the Center for Advanced Marine Core
Research, Kochi University, Japan, were performed
during routine Thellier-type and Shaw-type paleoin-
tensity measurements. Temperatures were measured
using the inbuilt thermocouple located in the sample
region of the furnace and were taken every 10 s
throughout the entire heating/cooling cycle. An
example of a full thermal cycle and the quantification
of the data are given in the auxiliary material.1 Data
were collected from a total of 58 heatings to various
set temperatures. Typically three or less repeat heat-
ings were performed for most set temperatures, but
29 heatings to a set temperature of �610�C were
measured. The standard deviation of the peak tem-
perature from these 29 heatings is 0.18�C; however,
there is some indication that the hold time has an
influence. Fifteen data have a hold time of �2500 s
and 14 have a hold time of �3500 s, with standard
deviations of 0.14�C and 0.22�C, respectively. This
indicates that longer hold times lead to greater
deviations in the repeatability of peak temperature,
which may be due to increased likelihood of larger
fluctuations in the peak temperature with increasing
hold time. The model uses an average hold time of
40 minutes (2400 s), therefore a temperature repro-
ducibility standard deviation (dTRepeat) of�0.14�C is
taken to be a reasonable estimate. In our model we
simulate the effects of experimental noise by ran-
domly drawing an effective peak temperature from a
continuous PDF. The Kolmogorov-Smirnov (KS)
test cannot reject the null hypothesis that variations
in peak temperature reproducibility are normally
distributed about their mean value at the 0.05 sig-
nificance level. We therefore assume that the effec-
tive peak temperatures are normally distributed.

2.1.2. Furnace Thermal Gradients

[8] Within paleointensity furnaces it is common for
thermal gradients to exist along the length of the
furnace. In the presence of such gradients, error in
the repositioning of a sample within the furnace
may contribute to variations in the reproducibility
of the peak temperature during heating. Measure-
ments of the peak temperature as a function of
position within an ASC TD48 thermal demagne-
tizer at the Institute of Geology and Geophysics,
Chinese Academy of Sciences (IGGCAS) indicate
peak thermal gradients of �0.32�C/cm. These gra-
dients are approximately independent of the set
temperature (details are given in the auxiliary
material). No data are available to constrain the
repositioning of a sample within a furnace. For
simplicity, however, we assume that sample posi-
tion is normally distributed about the initial position
and that �95% of the time the sample can be
repositioned to within 0.5 cm of the initial position
(i.e., a standard deviation of 0.25 cm). For a fully
loaded paleointensity furnace, where the spacing
between samples is small, this is a reasonable esti-
mate. For a partially loaded oven, however, this
may be an underestimate. Combined with the
measured thermal gradients, this suggests that the
variation in peak temperature due to thermal gra-
dients (dTGrad) is on the order of �0.08�C, is
independent of the set temperature (T), and follows
a normal distribution of the form N (T, dTGrad

2 ).
This treatment of dTGrad ignores any thermal gra-
dients that may exist over the sample and may
result in inhomogeneous heating of the samples.

2.1.3. Furnace Hold Time

[9] The acquisition and demagnetization of TRM is
controlled by a time-temperature relation such that
remanence acquired or demagnetized at high tem-
perature for a short period of time can be equivalent
to remanence acquired or demagnetized at a lower
temperature, but for a longer period of time [Néel,
1949; Pullaiah et al., 1975]. This thermoviscous
behavior is an inherent property of magnetic mate-
rials and during laboratory experiments that involve
thermal activation these effects can become
important. During a paleointensity experiment, a
sample is typically held at temperature for a period
time, which allows the sample to reach an equilib-
rium temperature with the furnace. If, however, the
sample is held at temperature for a longer period of
time it is possible that excess remanence will be
demagnetized or gained relative to previous heating
steps. Therefore, the effective temperature of (un)1Auxiliary materials are available in the HTML. doi:10.1029/

2012gc004046.
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blocking is controlled by the set temperature and
the hold time.

[10] In the model an average hold time of 2400 s
is used and based on the thermal demagnetizer
temperature data (with a hold time of �2500 s) the
KS cannot reject the null hypothesis (0.05 signifi-
cance level) that the hold time data are normally
distributed with a mean of 2500 s and standard
deviation of 30 s. We therefore adopt a standard
deviation of hold time of 30 s. This hold time refers
the period of time during which the thermal
demagnetizer remains at peak temperature and may
not reflect the time that the sample is at peak tem-
perature. First-order lumped capacitance thermo-
dynamic calculations [see, e.g., Incropera et al.,
2007] based on the thermal demagnetizer data
indicate that a standard 2.5 cm paleomagnetic
sample will reach ≳99% of the peak temperature
after �800 s of hold time. Therefore the effective
hold time is�1600� 30 s and this value is used for

the calculation of temperature variations due to
hold time variations.

[11] Assuming that SD magnetite is the magnetic
carrier, we can use the simple time-temperature
relation outlined by Pullaiah et al. [1975] to
translate the deviation about the average hold
time into a deviation about the average effective
temperature (equivalent to deviations about the
set temperature, T). For magnetite, Pullaiah et al.
[1975] defined the time-temperature relation of
magnetization by:

T1lnðf0t1Þ
M 2

s ðT1Þ
¼ T2lnðf0t2Þ

M 2
s ðT2Þ

; ð1Þ

where f0 is the attempt frequency of thermal fluc-
tuations (≈1010 Hz), Ms(T) is the saturation magne-
tization at temperature T, and t1, T1, t2, T2 are the
equivalent time-temperature pairs. For Ms(T) varia-
tions we assume thatMs(T)∝ (1� T)0.39 (details are
given in the Auxiliary Material) [see also Tauxe,
2010].

Figure 1. (a) Standard deviation of temperature that results from variations in hold time. Black dots are determined
from the Monte Carlo method described in section 2.1.3 and the red line is the best-fit polynomial. (b) Kolmogorov-
Smirnov (KS) test probabilities that temperature uncertainties that result from hold time variations are normally distrib-
uted. The red line indicates the 0.05 significance level below which the assumption of normality can be rejected.
(c) Standard deviation of temperature that results from variations in cooling rate. The symbols are the same as in
Figure 1a. (d) KS test probabilities that temperature uncertainties that result from cooling rate variation are normally
distributed. The red line is the same as in Figure 1b. (e) Total temperature deviation (dTTotal) and individual contri-
butions as function of the set temperature. (f) Empirical cumulative distribution function (ECDF) of the standard
deviation of magnetometer measurements as a percentage of the respective NRM vector component. The dashed line
marks the 95th percentile, which was used to define dM(x,y,z). (g) ECDF of measured magnetometer background
noise (red line) and the best-fit Cauchy distribution (blue line). (h) ECDFs of angular deviation from the within-
measurement noise (green line), reorientation uncertainty (dq; red line), and the best-fit Weibull distribution to the
reorientation distribution (blue line).
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[12] Given an average effective hold time (t1 =
1600 s), an average set temperature (T1 = T), and a
random hold time (t2) drawn from a normal distri-
bution with mean t1 and a standard deviation of
30 s, an effective demagnetization temperature (T2)
can be numerically calculated from equation (1).
For each set temperature this procedure is repeated
104 times to define the distribution of effective
temperatures and the standard deviation (dTHT) of
this distribution about T1 is calculated. The varia-
tion of dTHT as a function of set temperature is
shown in Figure 1a and the probabilities that the
effective temperatures are normally distributed
(determined by the KS test) are shown in Figure 1b.

[13] The deviation of effective temperatures varies
as a function of the set temperature and can be
approximated by a cubic polynomial of the
form dTHT = aT 3 + bT 2 + cT + d, where
a = �2.764 � 10�10, b = �6.679 � 10�7,
c = 2.678� 10�4, and d = 0.123. With the exception
of few points, the KS test cannot reject the null
hypothesis that the effective temperatures that result
from variation in hold time are normally distributed
at the 0.05 significance level. In order to maximize
the efficiency of the model, this simple empirical
approximation is adopted. When the set temperature
is zero (i.e., no heating) or when T ≥ Tc (the Curie
temperature), dTHT is set to zero.

2.1.4. Cooling Rate

[14] The time-temperature dependence of TRM
also manifests as a dependence on the rate of cool-
ing during remanence acquisition/demagnetization
[Dodson and McClelland-Brown, 1980; Halgedahl
et al., 1980] and variations of cooling rate between
heatings to the same temperature will contribute
to experimental noise. The thermal demagnetizer
data indicate that the time taken to cool to ambient
temperature is exponentially related to the set tem-
perature, as would be expected from Newtonian
cooling. It is also found that the cooling time and the
standard deviation of cooling time approximately
follow a linear relation in log-log space. These
two relations (outlined in the auxiliary material)
allow the cooling time and standard deviation of
cooling time to be estimated as a function of the
set temperature.

[15] For SD magnetite, Dodson and McClelland-
Brown [1980] described the effective demagneti-
zation temperature (T2) by:

T2 ≃
�0Mr

s ðT2Þ
kBlnðf0thÞ ; ð2Þ

where �0Ms
r(T2) is the energy barrier to thermal

fluctuations, �0 is the energy barrier at T = T0 = 0,
r is an anisotropy dependent constant (for mag-
netite dominated by shape anisotropy r ≈ 2), kB is
the Boltzmann constant, and th is the demagneti-
zation timescale (th = 1600 s). The initial energy
barrier, �0, can be described by:

�0Mr
s ðT1Þ

kBT1
¼ ln

gf0
_T1

� �
� ln

�0QðT1Þ
kBT1

� �
; ð3Þ

where

QðT1Þ ¼ rM ðr�1Þ
s ðT1Þ dMsðT1Þ

dT1
�Mr

s ðT1Þ
T1

: ð4Þ

In equation (3), ln(g) is Euler’s constants and _T
is the cooling rate. In the framework of Dodson
and McClelland-Brown [1980], T1 and T2 are the
“natural” and “laboratory” (un)blocking tempera-
tures, respectively. In the context of our model T1
can be viewed as the set (un)blocking temperature
and T2 the effective (un)blocking temperature that
is experienced by the sample. As before, Ms(T)
variations are approximated byMs(T)∝ (1� T)0.39.

[16] Given a mean cooling time (t1) from the
set temperature (T1), an approximate cooling rate
( _T1 =

ðT1�T0Þ
t1

) can be calculated (based on the cool-
ing time relation derived from the thermal demag-
netizer data). The mean effective demagnetization
temperature (T2) is then calculated by numerically
solving equation (2). Variations in the cooling rate,
_T 1, will results in variations in T2 and, for a fixed
T1, a distribution of _T 1 will give rise to a distribu-
tion of T2 values.

[17] The cooling rate of a repeat heating to T1 is
calculated by randomly drawing a cooling time (t2)
from a normal distribution with mean t1 and stan-
dard deviation determined from the empirical rela-
tion obtained from the thermal demagnetizer data.
Equation (2) is numerically solved for T2 and the
process is repeated for each set temperature 103

times to build the distribution of T2.

[18] The temperature deviation that results from
variations in cooling rate (dTCR) is a function
of the set temperature and can be approximated
by a fourth order polynomial of the form
dTCR = aT 4 + bT 3 + cT 2 + dT + e, where
a = �1.701 � 10�11, b = 9.487 � 10�9,
c = �1.457 � 10�6, d = 7.777 � 10�4, and
e = 0.118 (Figure 1c). As is the case for dTHT, for
most points the KS test cannot reject the null
hypothesis that the effective temperatures are
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normally distributed at the 0.05 significance level
(Figure 1d). This assumption, however, breaks
down as T → Tc and dTCR drops rapidly to zero. In
our model this should only affect a small number of
points. We therefore assume normality and use the
above empirical approximation to model the tem-
perature errors due to cooling rate variation. A key
assumption of our treatment of cooling rate is that
the NRM and TRM are blocked over the same
timescale (before the consideration of noise), which
negates the need to apply a cooling rate correction
to the final paleointensity estimate.

2.1.5. Total Temperature Variation

[19] Given that normality and independence can be
assumed for the four above described sources of
temperature noise, the total variance of temperature
can be expressed as the sum of the squares of the
repeat heating, thermal gradient, the hold time, and
cooling rate variances:

dTTotal2 ¼ dTRepeat2 þ dTGrad2 þ dTHT2 þ dTCR2 : ð5Þ

The contributions that each of these make to the total
temperature uncertainty are shown in Figure 1e.
Temperature fluctuations in a paleointensity experi-
ment are modeled by randomly drawing an effective
temperature from a normal distribution of the form
N (T, dTTotal

2 ).

2.2. Field Uncertainties

2.2.1. Applied Laboratory Field

[20] The variation of the applied field (FLab) during
a paleointensity experiment can be assessed by
considering the stability and reproducibility of the
applied current. The Yokogawa Electric Corpora-
tion model 7651 constant current power supply
that is used at Kochi University for the applied
fields, outputs currents of �30–50 mA to generate
fields of �30–50 mT in the Natsuhara-Giken fur-
nace (typical fields used during a paleointensity
experiment). The repeatability of the applied field
between steps can be estimated by the resolution of
the applied current, which limits the accuracy of
reproducing the same current. For this power sup-
ply the applied current resolution is �100 nA,
which corresponds to an applied field reproduc-
ibility of �0.1 nT. The temporal stability of the
applied current may also influence FLab during a
paleointensity experiment. The stability of the
applied current is�(0.0015% + 0.3 mA) over a 24 h
period. For typical fields and for a typical duration

of applied field (�2 h), this corresponds to tempo-
ral stability of �0.06–0.09 nT.

[21] As is the case for thermal gradients small field
gradients exist within a paleointensity furnace.
Measurement of the variation of applied field as a
function of sample position within the ASC TD-
48SC furnace at the University of Southampton and
the Pyrox paleointensity furnace at the IGGCAS
indicate that peak gradients in the applied field
are linearly correlated with the set applied field
strength (shown in the auxiliary material). This
linear relationship corresponds to constant field
gradients that are �0.03% of the applied field.
This is on the order of 9–15 nT/cm for applied
fields of 30–50 mT. If we consider the treatment
of sample position given in section 2.1.2, the
corresponding standard deviation of field gradients
is 2.25–3.75 nT, or �0.0075% of the applied field.
This treatment of sample repositioning deals only
with the variation in the magnitude of the applied
field and variations of the direction of the applied
field with respect the samples are discussed below.

[22] The influence of temporal stability and applied
current reproducibility are at least an order of
magnitude small than the effects of field gradients
and are not considered in the model. We therefore
estimate the applied field uncertainty (dFLab) as
0.000075 � FLab. Values of the effective applied
field are randomly drawn from a normal distribu-
tion of the form N (FLab, dFLab

2 ).

2.2.2. Residual Fields

[23] Residual fields within thermal demagnetizers
are variably reported to be on the order of �5 nT to
<150 nT [e.g., Yu and Dunlop, 2002; Yamamoto
et al., 2003; Pan et al., 2005; Yamamoto and
Tsunakawa, 2005; Draeger et al., 2006; Yu and
Tauxe, 2006; Biggin et al., 2007; Shcherbakova
et al., 2008; Böhnel et al., 2009; Paterson et al.,
2010a; Zheng et al., 2010]. Excluding poorly con-
strained estimates (i.e., those that only report
residual fields less than a peak value) the average of
the reported residual fields is �24 nT with a stan-
dard deviation of �20 nT, which corresponds to
�0.04–0.06% of typically applied fields used dur-
ing TRM acquisition. In the model the residual field
intensity deviation (dFRes) is taken to be 0.05% of
FLab. Most of the reported residual field estimates
only note the total intensity and not direction. Data
from Zheng et al. [2010] suggest that the orienta-
tion of the residual fields is variable between ovens,
but no data from the same oven between heating
steps are available for this study. In the model dFRes
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only describes the residual field intensity.We assume
that the residual fields are oriented along the same
axis as the applied field and orientation noise is
added to the total applied field (see below). Residual
field values in the model are randomly drawn from a
normal distribution of the form N (0, dFRes

2 ) (i.e., on
average, residual fields are zero).

2.2.3. Field Orientation

[24] Uncertainties in the orientation of the applied
or residual field with respect to the sample are also
considered. These may arise from fluctuations in
the direction of the applied field due to residual
fields or from differences in sample orientation
between heating steps. No data are available to
constrain the magnitude of this misorientation
uncertainty (df). In the model we incorporate field
orientation uncertainties using the same procedure
as is used for incorporating uncertainties due to
sample misorientation during measurement, which
is described in section 2.3.3.

2.3. Measurement Uncertainties

2.3.1. Magnetometer Measurement Noise

[25] Magnetometer measurements of a magnetic
remanence vector are subject to random noise,
which can be determined by taking multiple mea-
surements of a remanence vector. Automated
alternating field (AF) demagnetization was carried
out on 64 volcanic samples using the 2G Enterprise
760 SQUID Magnetometer at the IGGCAS. At
each demagnetization step the NRM vector was
measured 5 times on each axis to determine the axis
mean and associated measurement standard devia-
tion. A total of 3615 measurements of the NRM
vector components were obtained. In general, the
noise is proportional to the intensity of the respective
axis measurement with�95% of all the data having a
measurement standard deviation ≤0.36% of the mean
axis measurement (Figure 1f). In the model mea-
surement uncertainty (dM(x,y,z)) is taken as 0.0036 �
RM, where RM is the remanence vector (e.g., the
NRM vector). Measurement noise is incorporated
into the model by adding remanence fluctuations
drawn fromN (0, dM(x,y,z)

2 ) to the individual x, y, and
z components of the “measured” remanence vector.

2.3.2. Background Noise

[26] A total of 9,858 magnetometer background
measurements obtained during the automated mea-
surement of 151 samples were used to estimate

background noise of the IGGCAS 2G magnetome-
ter (Figure 1g). Background noise (dBG) is typically
low with�96% of all measurements being less than
0.02% of the initial NRM. The distribution of dBG
can be approximated by a Cauchy distribution with
location parameter a = 1.785 � 10�4 and shape
parameter b = 8.729 � 10�4 and values are ran-
domly drawn from this distribution. Although the
measured |dBG| is ≤0.8%, there is a finite proba-
bility that the best fit Cauchy distribution will
produce unrealistic levels of background noise.
Therefore, |dBG| is set to a maximum of 0.8% of the
initial NRM. Testing of the model and the final
results, however, indicates that dBG makes a negli-
gible contribution to the final remanence data (see
section 4). Magnetometer drift was found to be of a
comparable magnitude or less than background
noise and has not been considered in this model.

2.3.3. Sample Reorientation

[27] Manual handling of a sample will lead to
uncertainties in the reorientation of the sample with
respect to the measurement axes of the magne-
tometer. Eight volcanic samples were measured
20 times on the IGGCAS 2G magnetometer with-
out being removed from the sample tray. The
samples were half standard size (1.1 cm length,
2.5 cm diameter) and plastic holders were used to fix
the samples in place. The angular difference between
the 20 measured directions and the mean direction
of the 20 measurements for each sample was cal-
culated. This is the within-measurement angular
deviation that results from measurement noise (i.e.,
dM(x,y,z)). The samples were then removed from and
replaced back onto the sample tray and measured
20 times. This process was repeated a total of
25 times. For each sample the angles between the
25 repeat mean directions and the mean of those 25
directions were calculated. The angles from all
samples were combined to estimate the distribution
of angles that results from removing and replacing
a sample into the magnetometer (dq; Figure 1h).

[28] The distribution of within-measurement angu-
lar deviation tends to lower values compared with
dq, which suggests that dM(x,y,z) was sufficiently
averaged and that dM(x,y,z) and dq can be treated as
independent sources of noise. The distribution of dq
in radians can be well approximated by a Weibull
distribution with scale parameter a = 0.033 and
shape parameter b = 1.633. If the vectors are
transformed onto a two-dimensional plane where
angular deviation can be given a sense of rotation
(i.e., positive or negative rotation) the distribution
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of dq would correspond to a normal distribution
with a standard deviation of �2� (0.034 radians,
i.e., ≈a). For full sized standard paleomagnetic
samples it may be expected that dq should be lower.
For mini-samples (1 cm length, 1 cm diameter),
which are now commonly used for paleointensity
experiments, dq is likely to be of a similar magni-
tude. Angular noise is incorporated by randomly
drawing a value for dq from the above Weibull
distribution and rotating the remanence vector by
this angle around a randomly generated rotation
axis. It may be expected that misorientation is most
likely to be due to preferential rotation of the sam-
ple about the z-axis (i.e., the axis of the orientation
arrow). The measured misorientation, however,
includes sample translation and quantifies the total
misorientation as an effective angle of rotation. The
result is that the axes of rotation are randomly dis-
tributed on a unit sphere with no preference for
rotation about a single axis (see the auxiliary
material for further details). The same procedure
and angular distribution is used for df. In this case
the orientation vector of the effective applied field
(applied and/or residual fields) is rotated.

3. Modeling an Ideal Paleointensity
Experiment

3.1. Paleointensity Protocols

[29] A number of basic paleointensity methods exist
(e.g., Shaw-type or Thellier-type). In this study we
have modeled the most commonly used Thellier-
type methods: the original Thellier-Thellier [Thellier
and Thellier, 1959], the Coe [Coe, 1967], the Aitken/
Walton [Aitken et al., 1988; Walton, 1979], and the
IZZI [Yu et al., 2004] protocols. These procedures are
based on the principle that the NRM of a paleomag-
netic sample is progressively replaced by a laboratory
TRM acquired in a know field (FLab). The strength of
the ancient geomagnetic field (FAnc) can be deter-
mined from:

FAnc

FLab
¼ NRMAnc

TRMLab
: ð6Þ

[30] When the NRM is progressively replaced by a
laboratory TRM, multiple estimates of this ratio can
be determined, which provides a more robust esti-
mate of FAnc. Analysis is typically performed on an
Arai diagram [Nagata et al., 1963], which plots the
NRM remaining after demagnetization against the
TRM gained after remagnetization to the same
temperature. The best-fit slope through selected
points on the plot provides the estimate of FAnc

FLab
.

[31] The protocols differ in the order in which the
sample is de-/remagnetized. The Thellier-Thellier
protocol involves a first heating step in an applied
field, FLab. The sample is then reheated to the same
temperature and cooled in a field of the same
strength, but with opposite polarity (�FLab). The
vector sum of these two resultant magnetizations is
twice the NRM remaining after heating and the
vector difference is twice the TRM gained. In the
Coe protocol the first heating step occurs in zero-
field, which allows the NRM remaining to be
directly measured. The second heating is in an
applied field. The Aitken protocol reverses this
sequence with the first step being the in-field step.
The IZZI protocol alternates between the Aitken
sequence (in-field, zero-field; IZ) and the Coe
sequence (zero-field, in-field; ZI).

[32] In our modeled experiments we use 14 tem-
perature steps between ambient temperature and the
Curie temperature (Tc). The model assumes SD
magnetite is main magnetic carrier and the experi-
ment uses temperature steps of 0, 75, 150, 225, 300,
375, 450, 500, 530, 560, 565, 570, 575, and 580�C.
Where appropriate, the procedure incorporates
both partial TRM (pTRM) checks and pTRM tails
checks, which are standard tests for non-ideal
behavior. These checks were conducted at alter-
nating temperature steps (i.e., pTRM tail checks at
75, 225, 375, etc. and pTRM checks at 75, 150,
300, etc.). The pTRM checks cover a continuous
range, such that the check to 75�C was performed
after a peak temperature of 150�C, the check to
150�C was performed after a peak temperature of
300�C, and so on. Although pTRM checks are
routinely performed, pTRM tail checks are not
and the effects of omitting these from the experi-
mental procedure will be discussed in section 6.4.

[33] For a hypothetical ideal sample in the absence
of noise, all Thellier-type protocols will yield
identical results. With the exception of the Thellier-
Thellier protocol all protocol yield identical results
when subject to experimental noise. For brevity, in
sections 4 and 5 we present results from the most
widely used protocol, the Coe protocol, but the
influence of experimental protocol and the differ-
ences seen from the Thellier-Thellier protocol are
discussed in section 6.4.

3.2. Defining a Blocking Function

[34] An ideal non-interacting SD sample obeys
Thellier’s laws of independence, additivity and
reciprocity [Thellier, 1938; Thellier and Thellier,
1959]. The law of independence states that pTRMs
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imparted over different, non-overlapping tempe-
rature intervals are completely independent in
direction and intensity. Additivity is the property
that the sum of all pTRMs acquired between Tc and
ambient temperature should be equal to the total
TRM acquired by cooling from Tc to ambient tem-
perature in a single step. Thellier’s law of reciproc-
ity states that a pTRM acquired over a particular
temperature interval, say pTRM(T2, T1), is com-
pletely removed by reheating to T2 in zero field.
This assumption is equivalent to saying that the
blocking temperature and the unblocking tempera-
ture are identical.

[35] Given these properties the blocking and
unblocking of remanence carried by ideal non-
interacting SD samples can be described by identi-
cal distributions of (un)blocking temperatures. In
the case of a paleointensity experiment the NRM
remaining after demagnetization to temperature Ti
and the TRM acquired after remagnetization to Ti
can be phenomenologically described by:

NRMðTiÞ ¼ FAnc

Z Tc

Ti

f ðTÞdT ; ð7Þ

TRMðTiÞ ¼ FLab

Z Ti

0
f ðTÞdT ; ð8Þ

where f(T) is the distribution of (un)blocking tem-
peratures. Practically speaking, in a Coe protocol
paleointensity experiment the TRM gained cannot
be directly measured. The total magnetization (J),
which is the summation of the TRM gained and
NRM remaining, is measured:

JðTiÞ ¼ NRMðTiÞ þ TRMðTiÞ

¼ FAnc

Z Tc

Ti

f ðTÞdT þ FLab

Z Ti

0
f ðTÞdT : ð9Þ

The TRM gained is determined from:

TRMðTiÞ ¼ JðTiÞ � NRMðTiÞ: ð10Þ

These equations can be generalized to the case of a
three-dimensional remanence vector by describing
the fields and respective remanences in terms of
x, y, and z vector components and assuming that the
blocking function, f(T), is independent of field ori-
entation (i.e., the common assumption that paleo-
magnetic samples are isotropic).

[36] The function f(T) should be such that
R
0
Tc f(T)

dT = 1 (i.e., all blocking occurs below Tc). Several
functions have been proposed to model f(T) [e.g.,
Kono and Tanaka, 1984; Fabian, 2001], in this

model, however, a beta distribution is used. This
distribution is preferred for a number of reasons.
First, unlike other proposed distributions a beta
distribution exists only in the range [0, 1], which
constrains all blocking to occur between ambient
temperature and Tc. Second, NRM thermal demag-
netization data from 2115 published volcanic sam-
ples [Tauxe et al., 2004a, 2004b;Huang et al., 2005,
2006, 2007; Zhu et al., 2008; Liu and Zhu, 2009;
Pan et al., 2005; Paterson, 2009; Tauxe and
Kodama, 2009; Paterson et al., 2010b; Muxworthy
et al., 2011; Qin et al., 2011] and 102 unpublished
samples (basalts from the Emeishan Large Igneous
Province, SWChina) were used to assess the quality
of fit provided by various functions. Assuming a
beta distribution of unblocking temperatures pro-
vides the best overall fit to the real data when
compared with other tested distributions (details are
given in the auxiliary material). We use the best-fit
beta distributions to the real data as input to our
simulations. Since the beta distribution is bound to
[0, 1], all temperatures in the model have been
normalized by the Tc of magnetite (580�C).

3.3. Incorporating Noise Into the Model

[37] In their model of paleointensity noise, Kono
and Tanaka [1984] assumed individual sources of
remanence variance to be independent and nor-
mally distributed and used Gaussian error propa-
gation to describe the variances of NRM and TRM.
It should be noted, however, that while the base
variations may be assumed to follow a normal dis-
tribution, when transformed into remanence varia-
tions normality may not be preserved. Consider
temperature variations in the situation where the
NRM is demagnetized to the Curie temperature. If
the effective temperature is less than Tc by, for
example, 2�C the sample is under-demagnetized, if
the temperature is identically Tc then the sample is
fully demagnetized, and in the case where the
temperature exceeds Tc by 2�C the sample is also
fully demagnetized. Although the temperature var-
iation is symmetric, due to the fact that Tc limits
the unblocking range, the remanence uncertainty
is asymmetric and may not be approximated by
normality. The extent of the asymmetry depends on a
number of factors such as the (un)blocking spectrum
of the sample. It may also be masked by variations
that are normally distributed in remanence space
(e.g., measurement uncertainties). To overcome this,
the present model incorporates variations at a level
where the distribution is known or can be reasonably
assumed and numerically propagates these variations
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(through equations (7)–(10)) to determine the rema-
nence variations.

[38] Experimental noise is added in a sequence that
represents the physical procedure of a paleointensity
experiment. Temperature noise (from all sources)
and effective applied field noise (applied and
residual fields, and field orientation noise) are added
into equations (7) and (9). This represents the “heat-
ing” phase of an experiment. Following this, mea-
surement, measurement orientation, and background
noise are added to the “measured” NRM and J vec-
tors. The noise is then numerically propagated into
the TRM vector through equation (10). The model
uses continuous integration of equations (7) and (9)
as opposed to discrete maps of (un)blocking tem-
peratures [e.g., Fabian, 2001; Biggin, 2006]. As a
consequence, the model holds no “memory” of pre-
vious treatments and this has to be explicitly incor-
porated. For example, the NRM remaining after
demagnetization to Ti can be described by:

NRMðTiÞ ¼ FAnc

Z Tc

Ti

f ðTÞdT þ Fres

Z Ti

0
f ðTÞdT : ð11Þ

If, for example, the remagnetization step heats to
Ti′ > Ti, strictly adhering to equation (9) neglects the
excess NRM demagnetized. The remagnetization
step must therefore be explicitly described by:

JðTi′Þ ¼ NRMðTiÞ þ ðFLab þ Fres′ Þ
Z T ′i

0
f ðTÞdT

� FAnc

Z T ′i

Ti

f ðTÞdT � Fres

Z Ti

0
f ðTÞdT ; ð12Þ

where the last two terms represent the demagnetiza-
tion of excess NRM and residual field magnetiza-
tions, respectively.

4. The Distribution of Uncertainties
at the Sample Level

[39] Before investigating the effects of experimental
noise on paleointensity selection parameters we first
examine the influence of noise on the data obtained
from two samples: One with a broad (un)blocking
temperature range (Sample 1), the other with narrow
(un)blocking close to Tc (Sample 2). The blocking
functions of these samples are based on the best-fit
functions to real demagnetization data and were cho-
sen due to their contrasting (un)blocking behavior.

[40] The modeled experiment uses the Coe protocol
with both pTRM and pTRM tail checks at the
temperature steps outlined in section 3. The labo-
ratory field is identical in strength and direction to

the NRM acquisition field. Idealized (i.e., without
noise) NRM unblocking and TRM blocking for
Sample 1 and Sample 2 are shown in Figures 2a
and 2c, respectively. Idealized Arai plots are shown
in Figures 2b and 2d, respectively. Since the propa-
gation of errors is achieved numerically, a Monte
Carlo approach with 104 simulations was used to
determine the underlying distribution from which the
remanence data are drawn. With this approach noise
is randomly drawn from the distributions outlined in
section 2, added to each step of the experiment and
numerically propagated through the calculations of
the TRM and the check differences. The error bars
in Figures 2b and 2d indicate the range of NRM
and TRM values obtained from the Monte Carlo
simulations.

4.1. NRM and TRM Distributions

[41] At most temperature steps and for both sam-
ples the KS test cannot reject the hypothesis that the
NRM and TRM are normally distributed about their
respective means at the 0.05 significance level
(Figures 2e and 2g). For both samples the assump-
tion of normality breaks down when little TRM is
gained or when the NRM is almost fully demagne-
tized. This is when the remanence is bound by a
physical restriction (e.g., remanence is restricted to
exist only between ambient temperature and Tc),
which produces an asymmetric distribution of rem-
anence values, or when the remanence variance is
dominated by sources of experimental noise that are
non-Gaussian (e.g., dq, discussed below).

[42] The total variance of the TRM of Sample 1 is
consistently higher than that of the NRM
(Figure 2f). The variances of NRM and TRM that
result from individual components of experimental
noise are shown in Figures 2i and 2j, respectively.
It should be noted that the KS test rejects the null
hypothesis that some individual variance sources
are normally distributed, which confirms that
NRM and TRM variances cannot be described by
Gaussian error propagation. For the sake of sim-
plicity and first-order comparisons, however, indi-
vidual variance sources are calculated assuming
normality. Measurement errors (dM(x,y,z)) domin-
ate the NRM variance and are a major contributor
to the TRM variance. When little TRM is gained
the remanence variance that results from measure-
ment reorientation noise, dq, is high. The KS test
rejects the null hypothesis that remanence variance
due to dq is normally distributed, which is why the
TRM is not normally distributed over this interval.
As was noted above, the contribution from dBG is
negligible. Similarly, all other sources of noise
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make negligible contributions to the NRM and
TRM variances of Sample 1.

[43] For Sample 2 the TRM variance is also con-
sistently higher than the NRM variance (i.e., the
scatter of points along the x-axis of the Arai plot is
greater than along the y-axis; Figure 2h). The indi-
vidual sources of variance indicate that dTRepeat and
dTGrad contribute more to the NRM and TRM var-
iances of Sample 2 than for Sample 1 (Figures 2k
and 2l). This is intuitively expected given the nar-
row range of (un)blocking temperatures. The main
contributions to the NRM variance are dTRepeat,
dTGrad, and dM(x,y,z), with dTRepeat dominating the
total variance at high temperatures. The main sour-
ces of TRM variance are dTRepeat, dTGrad, dM(x,y,z),

and dq. The TRM variance that results from reori-
entation noise (dq) is high at low temperatures when
no NRM is demagnetized. For both samples, this
large variance is the result of the vector subtraction
of two near identical strong remanence vectors in
the calculation of a relatively weak remanence
vector (the TRM). When a sufficient amount of
NRM is demagnetized and TRM acquired dq drops
to effectively zero.

4.2. The Effects on pTRM and pTRM tail
checks

[44] The same simulations can be used to investi-
gate the distributions of checks used to detect non-
ideal behavior, as well as the contributions that the

Figure 2. (a, c) The NRM demagnetization (blue line) and TRM acquisition (red line) with no experimental noise for
Sample 1 and 2, respectively. (b, d) Arai plots from both samples. The black dots represent the ideal data and the error
bars represent the maximum and minimum NRM (blue) and TRM values (red) obtained from the Monte Carlo simula-
tions. (e, g) The probability that experimental noise produces normally distributed NRM (blue line) and TRM (red line)
values for both samples. (f, h) The total (dimensionless) variance of NRM (blue line) and TRM (red line) for both sam-
ples. The contribution of variance from different sources for the (i) NRM and (j) TRM of Sample 1, and the (k) NRM
and (l) TRM of Sample 2. In Figure 2h, TRM variance reaches a peak of �44 � 10�5 when the TRM gained is ≤1.2%.
This is due to variance from dq. For clarity, in both Figures 2h and 2l, TRM variance has been truncated.
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different sources of experimental noise make to
these distributions. Check values are calculated as
the absolute values of scalar differences and are
unnormalized. No parametric distribution was
found to adequately describe the distributions of
the check values for either sample. Given that
the check values are absolute deviations from zero
we use the 95th percentile of the empirical cumu-
lative distribution functions as a convenient non-
parametric measure of the width of the distribution
of check values. The parameter values that are used
to select data are typically the maximum check
values from all temperature steps below the highest
temperature used for the best-fit on an Arai plot.
Therefore, it is the combined distributions that
control the maximum likely check value (i.e., the
cumulated distribution of all previous check
values). The cumulative 95th percentiles for pTRM
and pTRM tail checks for both samples are shown
in Figures 3a–3d. These values represent the 95th
percentiles of the resultant distribution when all
check value distributions from previous steps are
combined. The cumulative 95th percentiles increase
as high check values are added to the distribution
and decrease as lower values are added.

[45] For both samples the check values are of a
similar order of magnitude, but the values for

Sample 2 tend to be higher. In both cases pTRM tail
checks are dominated by measurement errors
(Figures 3a and 3c). For both samples, residual
fields, cooling rate, and hold time variations make
noticeable contributions, but are not major sources
of noise. dTRepeat and dTGrad are the main sources
of temperature noise for pTRM tails checks for
Sample 2.

[46] Considering pTRM checks (Figures 3b and 3d),
for Sample 1 the main contributions are from mea-
surement and orientation errors. For Sample 2,
however, orientation errors are the largest contrib-
utor, with measurements errors the second largest.
For both samples, however, when the applied field
is perpendicular to the ancient field, measurement
orientation errors dominate pTRM checks (dashed
lines in Figures 3b and 3d). This increased influence
of measurement orientation errors dramatically
increases the total pTRM check discrepancy for
Sample 1. In a situation where FLab is applied at an
random angle with respect to FAnc for a suite of
samples, pTRM checks will tend to be controlled by
measurement orientation errors. We note that the high
TRM variance at low temperatures due to reorienta-
tion errors (e.g., Figures 2b and 2d) is the main reason
for high pTRM checks. This implies that pTRM

Figure 3. (a, b) The cumulative 95th percentile pTRM tail check and pTRM check values, respectively, for Sample 1.
(c, d) The cumulative 95th percentile pTRM tail check and pTRM check values, respectively, for Sample 2. (e–h) The
same as in Figures 3a–3d, but check values have been calculated by vector arithmetic. All check values are unnorma-
lized (i.e., they are the remanence differences). The black lines represent the 95th percentile values from the models
incorporating all source of experimental noise. The dashed lines in Figures 3b and 3d represent simulations where FLab

was perpendicular to FAnc. The remaining symbols are the same as in Figure 2. In Figures 3b, 3e and 3g the values
resulting from all errors and those resulting from dq coincide.
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checks at low temperatures, even before normaliza-
tion, are likely to be high in the absence of non-ideal
behavior and should be treated with caution.

5. The Influence on Paleointensity
Selection Parameters

[47] To investigate the effects that experimental
noise has on the paleointensity parameters used
to select data, additional Monte Carlo simulations
of the Coe protocol experiment were performed.
In these simulations, the parameters for the (un)
blocking function are selected from the real data
fits, but limited to the 93% (1,967 samples) best-fits

to the real data (see the auxiliary material for further
details). The procedure for the models is as follows.

[48] 1. Randomly select a (un)blocking spectrum
from the real data fits.

[49] 2. Create a randomly oriented, idealized NRM.

[50] 3. Simulate the paleointensity experiment with
FLab applied along the z-axis.

[51] 4. Randomly select a segment with a negative
slope, comprising at least 4 points, and with a
fraction ( f ) ≥ 0.15 and a gap factor (g) > 0.

[52] 5. Calculate the selection parameters for the
best-fit segment.

[53] 6. Repeat steps 1–5 for 104 simulations.

Figure 4. Empirical cumulative distribution functions (ECDFs) for various paleointensity parameters obtained from
the Coe simulations with fmin = 0.15. The green lines represent the simulations where FLab = FAnc, red lines where
FLab = 2FAnc, and blue lines where FLab = 1

2FAnc. For clarity some ECDFs have been truncated and the percentage
of missing values is indicated on each plot. (a) Deviation of the paleointensity estimate from the expected value.
(b–f) Arai plot and directional parameters. (g–k) pTRM check parameters. (l–n) pTRM tail check parameters. (o–p)
Arai plot curvature parameters. Definitions of the parameters are given in the auxiliary material.
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[54] The criteria in step 4 are necessary to avoid
unrealistic fits (e.g., fitting to a segment with
f = 0.01).

[55] Three experiments were modeled, each with
differing laboratory field strengths: FLab = FAnc,
FLab = 2FAnc, and FLab = 1

2 FAnc. Since FLab is
directly used in the quantification of the magnitude
of experimental noise (e.g., dFLab, dFRes), FAnc was
varied to simulate different field ratios. The mini-
mum acceptable fraction ( fmin), used in step 4
above, was varied from 0.15 to 0.90. The results
presented in this section are from a Coe protocol
experiment including both pTRM and pTRM tail
checks. For brevity the Aitken and IZZI protocols

are not presented, but they yield near identical
results and the below discussion is equally valid.

[56] Empirical cumulative distribution functions
(ECDFs) for the deviation of the paleointensity esti-
mates from the expected values and various paleoin-
tensity parameters commonly used to select data are
shown in Figure 4 ( fmin = 0.15). A table of quartiles
for these distributions is given in the auxiliary
material. The deviation is quantified as the logarithm
of the intensity estimate normalized by the expected
value. When the deviation is zero the estimate is
exactly what is expected; positive and negative values
represent over- and underestimates, respectively.
Deviation values ≥�0.0953 and ≤0.0953 are accurate

Table 2. Descriptive Statistics of the Monte Carlo Simulations Along With Criteria Threshold Values Typically
Used for Paleointensity Data Selection and the 95% Limits Determined From the Simulationsa

Criterion Typical Value FLab = 1
2FAnc FLab = FAnc FLab = 2FAnc

Coe Protocol
Mean deviation - 0.02 0.01 0.00
Scatter - 6.9 4.3 3.3
Percent inaccurate - 8.7 2.1 0.8
b ≤0.1–0.15 0.117 0.063 0.040
q ≥1–5 1.8 2.5 2.9
MAD ≤7–15 2.1 2.1 2.2
a ≤15 2.3 2.5 2.3
DANG ≤10–15 2.7 2.8 2.7
dCK ≤5–10 13.5 6.9 3.4
DRAT ≤7–10 20.3 16.6 10.6
CDRAT ≤10 21.8 17.6 12.0
Mean DRAT ≤3.5 3.8 3.0 2.0
dpal ≤5–10 23.3 11.4 7.7
DRATTail ≤10 2.9 2.3 1.6
dTR ≤6.5–15 0.9 0.9 1.1
dt* ≤3 16.3 8.1 4.1
k ≤0.164 0.122 0.069 0.042
SSE (�10�2) ≤1.260 1.263 0.311 0.087

Thellier-Thellier Protocol
Mean deviation - 0.00 �0.02 �0.05
Scatter - 4.4 5.4 9.5
Percent inaccurate - 3.4 11.1 24.0
b ≤0.1–0.15 0.077 0.127 0.257
q ≥1–5 1.5 0.8 0.4
MAD ≤7–15 7.8 15.1 25.8
a ≤15 3.9 7.0 13.7
DANG ≤10–15 7.5 15.1 30.1
dCK ≤5–10 6.7 3.4 1.7
DRAT ≤7–10 10.2 8.5 5.4
CDRAT ≤10 11.1 9.1 6.2
Mean DRAT ≤3.5 1.9 1.6 1.0
dpal ≤5–10 9.9 5.3 3.9
DRATTail ≤10 8.9 14.0 17.6
dTR ≤6.5–15 2.4 4.9 10.8
dt* ≤3 14.0 7.0 3.6
k ≤0.164 0.077 0.077 0.137
SSE (�10�2) ≤1.260 0.295 0.194 0.705

aThe minimum fraction for these simulations was fmin = 0.15. The criteria are defined in the auxiliary material. Bold font indicates situations when
typically used values are likely to be too strict. Scatter is the standard deviation as a percentage of the mean.
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within a factor of 1.1 (i.e., accurate within�10%) and
are deemed to be accurate. Values outside of this
ranged are classed as inaccurate. The definitions of
the various selection parameters are given in the
auxiliary material. Given that the fraction is largely
controlled by the random selection of points from a
uniform distribution it is near identical for all the three
models and is not shown.

[57] A consistent feature of the different FLabmodels,
is that whenFLab is lower than FAnc the results tend to
be poorer (i.e., fewer accurate paleointensity esti-
mates, more scattered data and with higher checks
values). In the models where FLab ≥ FAnc, over 97.5%
of the simulations yield accurate results, but when
FLab = 1

2FAnc only �91% of the simulations yield
accurate results (Table 2). The scatter (standard
deviation) of the intensity estimates also has an
applied field strength dependence (Table 2). The
scatter increases from 3.3% when FLab = 2FAnc, to
4.3% (FLab = FAnc), and reaches a maximum of 6.9%

when FLab = 1
2FAnc. All selection parameters exhibit a

similar applied field dependence with the exception
of directional parameters MAD, a, DANG, and the
pTRM tail parameter dTR (Figure 4), which are all
field invariant. It should be noted that FAnc is varied
in these models and these results are not related to
changes in FLab directly influencing noise.

[58] Example Arai plots from the FLab = FAnc

simulations are shown in Figure 5. The example in
Figure 5a has well behaved data with low pTRM
and tail check values and yields an accurate result.
The example in Figure 5b yields an accurate result,
but has a high DRAT value (14.3), which is likely to
be rejected by typically used thresholds. As will be
discussed below, this high value is related to the
fraction of NRM used for the best-fit linear segment
and a larger fraction would reduce DRAT; dCK
would be unaffected. The fraction used for this fit
( f = 0.33), however, would be accepted by many
paleointensity studies. The example in Figure 5c is

Figure 5. Example Arai and vector component diagrams from the simulations used to constrain the distributions of
selection parameters. For all plots FLab = FAnc. In the vector component diagrams, open (red) symbols represent the
horizontal component and the closed (blue) symbols represent the vertical component. The dashed green lines repre-
sent the true direction of FAnc (i.e., the NRM direction without noise). In the Arai plots the NRM and TRM have been
normalized by their respective maxima. Solid circles represent the points used to calculate the best-fit linear segment
(green line), blue triangles represent the pTRM checks, and red squares represent pTRM tail checks. (a) A near ideal
sample that yields and accurate results. (b) Accurate, but has a high DRAT value due to a relatively low fraction. (c) A
near ideal sample, but yields an inaccurate result. (d) Also a near ideal sample, but has a high dt* value due to one
noisy point that is identifiable in the vertical component of the NRM.
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a sample that would pass many typically used
selection criteria (Table 2), but yields an inaccurate
result. If the best-fit is extended to the next highest
temperature step the result would be accurate
(deviation = 0.094). The peak temperature of the
original best-fit is 450�C, if alteration were to occur
at high temperatures preventing the use of further
steps the low-temperature segment is likely to be
accepted and deemed to be a “reliable” result that
passes selection. This highlights a seldom acknowl-
edged issue with paleointensity data selection: even
under the most ideal of conditions complete dis-
crimination against inaccurate results may not be
possible. In Figure 5d the Arai plot data are near ideal
and yield a highly accurate results (deviation = 0.01),
a high quality factor (41.0), and low check values.
The dt* value, however, is much higher than previ-
ously proposed cut-off values (Table 2). The high
dt* is due to one noisy NRM point, which randomly
deviates toward the applied field direction (seen in
the vector component diagram in Figure 5d).
Although the pTRM tail check values are low, the
correction for angular dependence used to calculate
dt* amplifies the noise. This sensitivity may reduce
the ability of dt* to detect non-ideal behavior.

[59] By design the DRAT-parameters, which normal-
ize checks by the length of the best-fit line segment,
have a fractional dependence to penalize checks based
on small fractions. The fractional dependence of
DRAT, dCK, DRATTail, and dTR are shown in
Figure 6. The data in this figure are from the
FLab = FAnc model with fmin = 0.15 and have been
smoothed using a 25 point running average. Data from
the other field ratio models exhibit the same general
trends, but with differing parameter values. For the
DRAT pTRM check parameter, low fractions (0.15 ≤
f ≲ 0.3) produce high check values that, for most

studies, would result in rejection. It should be
emphasized that no non-ideal behavior, other than
experimental noise, is present in these simulations and
that if all inaccurate results (�2.1%) are removed this
feature remains. This suggests that the fractional
penalization of DRAT may be too strict. For pTRM
tail checks experimental noise is unlikely to result in
the rejection of data, but DRATTail still has a strong
fractional dependence. Mean DRAT and CDRAT also
exhibit a fractional dependence. The d-parameters
have no fractional dependence and only at fractions
≳0.707 (i.e., when the best-fit line is of equal length to
the total NRM or TRM) do the average DRAT-
parameter values fall below those of the d-parameters.

5.1. Defining Parameter Limits Caused
by Noise

[60] Limits of the parameter distributions can be
defined by considering the distribution 95th percentiles.
In the case of the quality factor (q [Coe et al., 1978]),
for which data are selected if they are above a critical
value, we use the 5th percentiles. The limits obtained
from the fmin = 0.15 simulations are given in Table 2.
These values represent the limits of variability due to
experimental noise and below these thresholds we
cannot distinguish non-ideal behavior from the
effects of noise. In practical terms, threshold values
used for selection criteria should be less strict than
these values otherwise near ideal samples that yield
accurate results may be rejected.

[61] Most parameter 95% thresholds for fmin = 0.15
are below typical values used for data selection

Figure 6. Fractional dependence of (a) pTRM checks
DRAT (blue line) and dCK (red line) and (b) pTRM tail
checks DRATTail (blue line) and dTR (red line). All
values are from the FLab = FAnc Coe protocol simulation
with fmin = 0.15 and have been smoothed using a 25
point running average.

Table 3. The Percentage of Results From Ideal
Samples, Subject to Experimental Noise, That Are
Rejected by Commonly Used Selection Criteriaa

Criterion Threshold FLab = 1
2FAnc FLab = FAnc FLab = 2FAnc

Coe Protocol
dCK >10 16.2 - -
DRAT >10 22.7 16.4 5.9
CDRAT >10 21.4 15.9 7.4
Mean DRAT ≤3.5 6.2 - -
dpal >10 21.1 6.6 -
dt* >3 55.0 33.8 10.9

Thellier-Thellier Protocol
b >0.15 - - 19.3
q <1 - 7.4 20.4
MAD >15 - 5.1 22.5
DANG >15 - - 17.7
DRAT >10 5.3 - -
CDRAT >10 6.4 - -
DRATTail >10 - 12.2 18.2
dt* >3 51.6 28.6 8.1

aThe minimum fraction for these simulations was fmin = 0.15.
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(Table 2). A number of parameters have 95%
thresholds above typical selection criteria, notably
DRAT, CDRAT, dpal, and dt*. This means that
these criteria are likely to reject hypothetical ideal
samples that are subject only to experimental noise.
Table 3 summarizes the percentage of results from
these simulations that would be rejected by the
typical selection criteria. The rejection rates range
from 6.2% (i.e., from just above the 95% limit of
detection, which is equivalent to a rejection rate of
5%) to a rejection rate of 55.0% (dt*). The pTRM
tail check parameter dt* has the highest rejection
rate of all criteria and this is a strong indication that
this parameter is highly sensitive to noise and
applied field strength.

[62] The fractional dependence of selection param-
eters discussed above also manifests as a fractional

Figure 8. The dependence of descriptive statistics on
the minimum accepted fraction for the Coe and Thellier
protocols. (a, b) The percentage of inaccurate results.
(c, d) The deviation of the mean results. (e, f) The scatter
of the results as a percentage of the mean results. The
colors are the same as in Figure 4.

Figure 7. The dependence of selection parameter 95%
thresholds on the minimum accepted fraction for the Coe
and Thellier protocols. (a, b) DRAT, (c, d) DRATTail,
(e, f) dpal, (g, h) b, (i, j) MAD. The colors are the same
as in Figure 4.
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dependence of the 95% thresholds. Some fmin

dependent 95% parameter limits for the Coe simu-
lations are shown in Figures 7a, 7c, 7e, 7g, and 7i
and descriptive statistics in Figures 8a, 8c, and 8e.
Additional parameters are shown in the auxiliary
material. In general, as fmin increases the parameter
95% thresholds decrease, most notably the DRAT-
parameters, which follow a power law decay with
increasing fmin. The exception to this is q (shown in
the auxiliary material), which increases due to its
proportionality with f and 1

b. The pTRM check dpal
has only a weak dependence on fmin, which is most
pronounced when FLab > Fanc (Figure 7e). The per-
centages of inaccurate results when FLab ≥ FAnc are
consistently low (≪5%), but an fmin of ≳0.55 is
needed to achieve a similar level for FLab = 1

2FAnc

(Figure 8a). The scatter of the results (Figure 8e)
consistently falls below 5% for fmin ≥ 0.5 and
decreases to a minimum of�1.7–3.8% for fmin = 0.9.

[63] For all field strengths the deviation of the mean
result is approximately constant (Figure 8c).
Although the mean results are accurate, there is a
small bias (up to �2.0%) towards overestimates of
the true intensity. This bias is due to the asymmetric
variance of the TRM at low and high temperatures.
If we consider Figure 2d, experimental noise at low
temperatures tends to produce apparently high
TRM acquisition (the points can be easily shifted
right on the plot). At high temperatures, where the
extent of noise is largely controlled by Tc, noise
tends to produce apparently low TRM acquisition
(the points can be easily shifted left on the plot).
The effect of this would be to produce a steeper
slope, which would result in a small overestimate of
the paleointensity. The small bias to high values is
from best-fit slopes that use a large proportion of
points from high or low temperatures.

6. Discussion

6.1. Other Models of Experimental Noise

[64] Kono and Tanaka [1984] proposed a method
of estimating the variance of NRM and TRM on
an Arai plot in order to find the most appropriate
least-squares or maximum-likelihood estimator
method for calculating the slope and associated
error of the best-fit linear segment. Their method
was based on Gaussian error propagation and, as
tested in section 4.1, Gaussian error propagation is
not appropriate for some individual error sources,
most notably those associated with angular devia-
tions. The NRM and TRM distributions, however,

are found to be approximately Gaussian, so it may
be possible that this approach is valid.

[65] We refer the reader to Kono and Tanaka [1984]
for full details of their method, but we have updated
their method as applied to a Coe protocol experi-
ment (equation 15 in their paper) to use a beta dis-
tribution of (un)blocking temperatures and the error
estimates constrained with real data. It is found that
for both Sample 1 and Sample 2 the NRM variance
is approximately one order of magnitude larger than
calculated by our model and the TRM variance is
about two orders of magnitude larger. Setting the
angular uncertainties (dq and df) to zero reduces the
variances to a comparable order of magnitude to our
model. The presence of non-Gaussian noise is
incompatible with the method of Kono and Tanaka
[1984]. Our findings suggest that the validity of
paleointensity estimates determined using the method
of Kono and Tanaka [1984] are questionable and
should be treated with caution. This highlights the
importance of numerical methods to propagate
uncertainties correctly.

6.2. The Generality of the Model

[66] Many of the noise sources incorporated into the
model have been constrained by real data measure-
ments that may not be general to every paleointensity
study. For example, repeat temperature uncertain-
ties are constrained from only the Natsuhara-Giken
TDS-1 thermal demagnetizers at the Center for
Advanced Marine Core Research and the measure-
ment noise only from the 2G magnetometer at the
IGGCAS. Other laboratories may use different
equipment or the measured noise may have different
statistical behavior. The effects of removing indi-
vidual sources of experimental noise on the 95%
thresholds was investigated and the tables for fmin =
0.15 and fmin = 0.35 are given in the auxiliary
material. In general, when individual noise sources
are removed from the model, the parameter 95%
thresholds decrease by only a small amount. The
exception is dq, which, if removed, reduces all
threshold values. Therefore, dq is the dominant
source of noise and the other sources can vary con-
siderably without affecting the overall results of these
simulations. The generality of our estimate of reori-
entation uncertainty is difficult to ascertain. Although
no other detailed measurements are currently avail-
able to estimate dq for other users/laboratories, a
first-order comparison can be made with the results
of Borradaile et al. [2006] who investigated sample
orientation using a Molspin spinner magnetometer.
For a standard sized sample of diabase Borradaile
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et al. [2006] determined Fisher statistics of a95 = 0.5
and k = 2723 for 30 repeat measurements. For
our 8 samples, the 25 reorientation measurements
yield values of a95 = 0.65–0.82 and k = 1260–2000.
These values are of a comparable magnitude and if
the precision estimates remain the same and an
additional five measurements were obtained the a95

values are likely to overlap. It should be noted that
Borradaile et al. [2006] did not investigate the
magnetometer measurement noise (dM(x,y,z)) and that
a single measurement using aMolspin magnetometer
requires four separate sample reorientations. Despite
these differences, this comparison suggests that our
estimate of dq is applicable to other studies and that
our overall results are widely applicable.

6.3. Implications for Experiment Design

[67] Three main factors dominate the influence
of experimental noise on paleointensity data, dq,
dM(x,y,z), and dTRepeat, which affect both paleoin-
tensity estimates and checks for non-ideal behavior.
dM(x,y,z) and dTRepeat are properties of the equip-
ment and are largely out of the control of the user.
The angular deviation, dq, which is the dominant
influence on a paleointensity experiment, could be
reduced by careful experimental design. Methods
that fix a sample during the course of the entire
paleointensity experiment (heating and measure-
ment) will effectively eliminate dq and df. Such
approaches, however, generally require specialized
equipment such as the microwave method [Hill and
Shaw, 1999] or paleointensity vibration sample
magnetometers [e.g., Le Goff and Gallet, 2004].
Alternatively, specialized sample holders will
reduce the influence of dq [e.g., Borradaile et al.,
2006; Böhnel et al., 2009]. This should be most

effective if the sample is not removed from the
holder for the duration of the paleointensity exper-
iment (i.e., the sample is heated while within the
holder). Holders that are used only for measure-
ment will aid in the reduction of dq, but in some
cases the reduction may be negligible. This may be
particularly important for mini-samples (1 cm
diameter), which are increasingly being used for
paleointensity studies.

[68] In Figure 9 the distributions of paleointensity
deviation and b from a Coe protocol model with all
errors included are compared with a Coe model
where both dq and df are set to zero; in both
models FLab = FAnc and fmin = 0.15. When angular
deviations are eliminated the likelihood of obtain-
ing an accurate result with a low scatter about the
best-fit linear segment is increased. The reduction
of b due to reduced angular deviation could
potentially explain the reduction of b observed by
[Biggin, 2010] when he compared the results of
microwave paleointensity experiments to those
obtained from thermal paleointensity experiments.
A table of 95% threshold values for simulations
with dq and df set to zero is presented in the
auxiliary material.

[69] A near consistent feature of the distribution
of selection parameters is the tendency of pro-
ducing poorer results when FLab is lower than FAnc

(Figure 4). That is to say there is an increased
probability of less accurate results (Figure 4a),
higher Arai plot scatter (from both b and SSE,
Figures 4b and 4p, respectively), lower quality
factors (Figure 4c), failure of both pTRM
checks (Figures 4g–4k) and pTRM tails checks
(Figures 4l–4o) is more likely, and Arai plots
exhibit a higher degree of curvature (Figure 4o).
These observations of paleointensity deviation and
b are supported by the experimental data ofMorales
et al. [2006] who investigated the effects of applied
field strength on natural samples. Their data also
indicate that when FLab is < FAnc paleointensity
estimates tend to be less accurate and Arai plots more
scattered. Tanaka and Kono [1984] also investi-
gated the effects of varying the strength of FLab.
The results of Tanaka and Kono [1984] indicate
that the scatter of the Arai plot is lowest when
FLab is within a factor of �2 of FAnc. It should be
noted that the paleointensity data of Tanaka and
Kono [1984] used the variance analysis of Kono
and Tanaka [1984] and, as noted above, this may
yield inaccurate results. Paterson et al. [2010a]
noted a high rate of data rejection from samples
where FLab was �5.6 times lower than FAnc. Their
interpretation was that the low FLab enhanced the

Figure 9. Comparison of the distributions of the
(a) absolute deviation of the paleointensity estimates
and (b) scatter of the best-fit line segments for a simu-
lated Coe experiment (FLab = FAnc and fmin = 0.15) with
all error sources included (red line) and with dq and df
set to zero (blue line).
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effects of MD grains, however, the results of our
simulations suggest that experimental noise may
have played a role in the failure of these samples.
This may be the case for other studies.

[70] From our analysis of experimental noise it can be
suggested that the most appropriate FLab should be
≥ FAnc. This, however, is based entirely on minimiz-
ing the effects of experimental noise acting on hypo-
thetical ideal samples. A general approach of setting
FLab≫ FAnc in real experiments would be inadvisable
as this may exaggerate some types of non-ideal
behavior (e.g., MD behavior [Biggin, 2006]).

6.4. Choice of Experimental Procedure

[71] Although the Coe protocol is the most widely
used Thellier-type paleointensity protocol other
protocols are used in modern studies [e.g., Kissel
et al., 2011; Donadini et al., 2011; Valet et al.,
2010]. For an ideal sample, in the absence of
noise, the Thellier, Coe, Aitken, and IZZI protocols
will yield identical results. Additional simulations
with fmin = 0.15 indicate that the Coe, Aitken, IZZI,
and the Coe protocol with no pTRM tail checks all
yield the same 95% threshold values to within ≲0.5
percentage points (within the limits of the Monte
Carlo approach). The exceptions to this are the
directional parameters for the Aitken protocol with
FLab = 2FAnc, which are two times higher (MAD
and a) or about three times higher (DANG) than the
other protocols. Tables of the 95% threshold values
for these simulations are given in the auxiliary
material. In general, these four protocols all
behavior in a similar fashion in the presence of
experimental noise and the limits of detecting non-
ideal behavior are the same. It should be noted,
however, that the introduction of some degree of
non-ideal behavior (e.g., alteration or grain size
effects) will reduce the similarity between these
protocols [e.g., Biggin, 2006].

[72] Considering the original Thellier-Thellier pro-
tocol, many of the 95% thresholds have an opposite
field dependence to that seen for the Coe simula-
tions (Table 2). For the Thellier-Thellier simula-
tions when FLab ≥ FAnc the results are more likely to
be inaccurate, with a higher scatter around the best-
fit line (Table 2). With the exception of pTRM
checks and dt*, all threshold values are higher
when FLab is high. Unlike the other protocols,
MAD, a, DANG, and dTR from the Thellier-
Thellier simulations have a strong FLab dependence
(Table 2). The pTRM checks follow the same FLab

trend as the other protocols (i.e., higher values
when FLab < FAnc), but have 95% thresholds that

are about half of those from the Coe simulations
(Table 2). DRATTail has much higher 95% thresh-
olds, which may be viewed as indicating the pres-
ence of non-ideal behavior, even though it is absent
from these simulations. It is also noteworthy that
when FLab = FAnc 11% of results are inaccurate and
this increases to 24% when FLab = 2FAnc (Table 2).
The higher pTRM tail checks, increased scatter and
inaccuracy of results suggests that the original
Thellier-Thellier protocol is more sensitive to
experimental noise when compared with the Coe
protocol. This is contrary to the findings of Kono
and Tanaka [1984] who concluded that the errors
in the Thellier-Thellier protocol were well balanced
would lead to better performance.

[73] In general, for the Thellier-Thellier protocol,
checks or parameters relating to TRM (i.e., pTRM
checks) are lower than for Coe protocols, but those
relating to NRM (i.e., Arai plot best-fit line, pTRM
tail checks, and NRM directional parameters) tend
to be much higher. The increased sensitivity of
NRM related parameters to experimental noise is the
result of the in-field heating steps and the vector
arithmetic used to calculate the NRM. The in-field
heating carries additional measurement and orien-
tation noise (both field and measurement orienta-
tion), which are propagated through the vector sum
used to calculate the NRM. The equivalent to
Figure 2 for a Thellier-Thellier model is given in the
auxiliary material. For both Sample 1 and 2, NRM
variance is comparable to, or higher than TRM
variance. This is particularly true at high tempera-
tures where dq and df dominate NRM variance. The
difference between the Thellier and Coe protocols is
not related to the small violation of Thellier’s law of
reciprocity (i.e., blocking and unblocking occur at
the same temperature in an ideal sample) in the Coe
protocol [Dunlop and Özdemir, 1997]. Full details
are given in the auxiliary material, but it can be
shown that if the maximum violation of reciprocity
is assumed for the Coe protocol simulations, the
only 95% thresholds affected areDRATTail and dTR,
which should increase by ≲1 and ≲0.5 percentage
points, respectively. It should be noted that this is an
upper limit and the effect is likely to be smaller.

[74] The fmin dependence of the 95% thresholds and
descriptive statistics for the Thellier-Thellier simu-
lations are shown in Figures 7b, 7d, 7f, 7h, and 7j,
and Figures 8b, 8d, and 8f. Although the DRAT
95% thresholds are lower than those from the Coe
simulations, the DRATTail thresholds are much
higher. An fmin ≳ 0.25–0.35 is needed to reduce the
DRATTail 95% thresholds to values that are below
those typically used for data selection, but even at
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fmin = 0.9 the thresholds are above the highest
values from the Coe protocol (Table 2 and
Figure 7c). For the scatter around the best-fit linear
segment fmin ≳ 0.4 is needed to bring b below 0.1 (a
typical selection criterion) for all values of FLab

studies here (Figure 7h). The values ofMAD for the
Thellier-Thellier simulations have a strong FLab and
fractional dependence (Figure 7j). This is in con-
trast to the Coe simulations in which MAD is FLab

and fraction independent (Figure 7i). A typical
selection criterion is to specify MAD ≤ 15; a frac-
tion of fmin ≳ 0.4 will bring the MAD 95% thresh-
olds below 15 for all Thellier-Thellier simulations.

[75] The percentage of inaccurate results from the
fmin = 0.15 simulations is high, but drops rapidly
with increasing fmin (Figure 8b). For FLab ≤ FAnc,
fmin ≥ 0.35–0.40 reduces inaccurate results to ≲1%,
but fmin ≳ 0.7 is needed when FLab = 2FAnc. The
mean intensities are accurate, irrespective of fmin or
FLab, but there is a small systematic underestimate,
which is reduced as fmin increases (Figure 8d). As is
the case for the Coe protocol simulations, the scat-
ter of results from the Thellier-Thellier simulations
decreases with increasing fmin (Figure 8f).

6.5. The Selection of Paleointensity Data

[76] From these simulations the majority of
paleointensity estimates are accurate (within 10%

of the expected value). The simulations with the
lowest number of accurate estimates are those from
the Thellier-Thellier protocol with FLab = 2FAnc

where �24% of estimates are inaccurate. Most
paleointensity studies aim to use an FLab value
close to FAnc and we therefore limit the following
discussion to the FLab = FAnc simulations. In this
case, the highest proportion of inaccurate results is
11%, again from the Thellier-Thellier protocol. The
high b and SSE values, which are measures of Arai
plot data scatter (Table 2) combined with the drop
of inaccurate results with increasing fmin, suggests
that scattered data on the Arai plot is the source of
many inaccurate results from these simulations.
The small proportion of inaccurate results com-
pared with real paleointensity data (e.g., �55% of
the historical data studied by Paterson [2011]
yielded inaccurate estimates) and the lack of true
non-ideal behavior in the simulations makes it diffi-
cult to define practical threshold values to use for data
selection. As previously noted, however, the 95%
thresholds in Table2 represent the upper confidence
limit of parameter values that can be produced by
experimental noise and below these values we cannot
distinguish non-ideal behavior from noise.

[77] The strong fractional dependence of various
selection parameters and descriptive statistics
allows us to justify the definition of a minimum
fraction for data selection. On the basis of reducing

Table 4. Descriptive Statistics of the Monte Carlo Simulations Along With Criteria Threshold Values Typically
Used for Paleointensity Data Selection and the 95% Limits Determined From the Simulations of Different Protocolsa

Criterion Typical Value Thellier Coe Coe No Tail Checks Aitken IZZI

Mean deviation - �0.02 0.01 0.01 0.01 0.01
Scatter - 3.0 3.5 3.6 3.0 3.9
Percent inaccurate - 1.1 1.4 1.1 1.1 1.1
b ≤0.1–0.15 0.058 0.051 0.050 0.050 0.050
q ≥1–5 4.7 6.5 6.9 6.9 6.8
MAD ≤7–15 7.9 2.1 2.1 2.3 2.2
a ≤15 3.7 2.0 1.9 2.2 2.0
DANG ≤10–15 7.6 2.3 2.1 3.2 2.3
dCK ≤5–10 3.4 6.8 6.7 6.9 6.9
DRAT ≤7–10 4.8 9.6 9.3 9.6 9.7
CDRAT ≤10 5.5 10.9 10.5 10.9 10.7
Mean DRAT ≤3.5 1.0 2.0 1.9 2.0 2.0
dpal ≤5–10 4.2 9.6 9.2 8.9 9.4
DRATTail ≤10 7.4 1.4 - - 1.4
dTR ≤6.5–15 5.0 1.0 - - 0.9
dt* ≤3 7.1 8.4 - - 8.1
k ≤0.164 0.077 0.070 0.070 0.079 0.074
SSE (�10�2) ≤1.260 0.196 0.319 0.311 0.322 0.320

Percentage of Results Rejected by Typical Criteria
CDRAT >10 - 6.4 6.2 6.6 6.1
dt* >3 27.6 33.5 - - 34.3

aFor all simulations fmin = 0.35 and FLab = FAnc. Bold font indicates situations when typically used values are likely to be too strict. Scatter is the
standard deviation as a percentage of the mean.
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the percentage of inaccurate results and reducing
scatter we recommend a minimum fraction of 0.35
for all protocols. When FLab ≈ FAnc, this ensures
low scatter of results (≤3.9%), low probability of
inaccurate results (≤1.4%), and it lowers most of
the 95% thresholds for fractional dependent para-
meters, which will increase their sensitivity to true
non-ideal behavior. These values are summarized
in Table 4.

[78] In general, most of the 95% thresholds of the
modeled parameters ( fmin = 0.35) are less than the
critical values typically used to select data (Table 4),
which implies that few (<5%) ideal samples subject
to only noise are being rejected in real studies. This
also means that some degree of non-ideal behavior
is likely to be passing selection. To some extent this
may be desirable, for example, a number of studies
indicate that small pseudo-single domain sized
grains, although in the strictest sense non-ideal, are
capable of yielding accurate paleointensity esti-
mates [e.g., Shcherbakov and Shcherbakova, 2001].
For the CDRAT and dt* parameters, however, typi-
cally used thresholds are likely to be too strict. Such
strict values result in the rejection of �6–34% of
ideal samples, many of which yield accurate results
(Table 4).

[79] Our analysis indicates that for the pTRM check
parameters DRAT, CDRAT, and dpal the threshold
values for data selection should be no less than
�10. The fractional dependence of DRAT and
CDRAT may result in these criteria being too strict
if f is low. For example in the Coe protocol simu-
lation with fmin = 0.15 and FLab = FAnc the DRAT
threshold is 16.6, but this decreases to 9.6 when
fmin = 0.35. The dCK pTRM check 95% threshold,
however, has no fractional dependence. It should be
noted that for the above mentioned three checks, at
fmin = 0.35 the 95% thresholds are close to what are
often viewed as more relaxed selection thresholds.
If “stricter” criteria were to be used (e.g., DRAT ≤ 7,
or dpal ≤ 5) it is likely that ideal data will be
rejected.

[80] For the use of standard pTRM and pTRM tail
checks, our simulations suggest that d-parameters
(i.e., dCK and dTR) are less sensitive to experi-
mental noise and choice of best-fit line segment.
The consistently lower 95% threshold values
(Tables 2 and 4), the fractional independence
(Figure 6), and the low applied field dependence of
dTR (Figure 4i) support this argument. The frac-
tional independence will make these parameters
independent of the choice of best-fit linear segment,
which may unknowingly suffer from user bias,

and the reduced noise dependence should make
these d-parameters more sensitive to small degrees
of non-ideal behavior. The efficacy of these selec-
tion parameters at excluding non-ideal behavior,
however, needs to be tested further.

[81] The large 95% threshold values (compared
with typical selection values) and the FLab depen-
dence of dpal and dt* are, in part, a result of how
they are calculated: by vector arithmetic. The
cumulative 95th percentile check values determined
using vector arithmetic for the simulations in
section 4.2 are shown in Figures 3e–3h. When
vector arithmetic is used for pTRM tails checks dq
becomes a dominant source of noise, and for pTRM
checks df makes significant noise contributions
alongside dq. This does not necessarily mean that
parameters based on vector arithmetic are inferior,
but simply that the typical values seen from real
data as well as their ranges and limits of detecting
non-ideal behavior are different to what may be
intuitively regarded as “suitable” for data selection.

[82] The typically used selection value for dt* (≤3)
is based on the phenomenological MD model of
Leonhardt et al. [2004], which does not include
experimental noise. This highlights the importance
of incorporating experimental noise into paleoin-
tensity simulations if they are to be used to define
data selection. The difference between this MD
model and our SD model with noise suggests that,
due to experimental noise, the ability for dt* to
identify non-ideal grain sizes may be reduced, but
must be further investigated.

[83] In addition to defining the 95% threshold
values, these simulations can also be used to define
an upper limit for the deviation of an individual
paleointensity estimate from the expected paleoin-
tensity. This can be achieved by taking the 95th
percentile of the distribution of absolute deviations
(e.g., the 95th percentile of the ECDFs shown in
Figure 9a). This value represents the maximum
likely degree of inaccuracy that results from
experimental noise and cannot be avoided. For
fmin = 0.35, the maximum degree of inaccuracy for
all protocols using zero-field steps is �6% and is
�7% for the Thelliier-Thellier protocol. This means
that deviations of up to �6–7% could be caused by
experimental noise and cannot be exclusively
attributed to non-ideal behavior.

7. Conclusions

[84] Paleointensity data selection is a notoriously
arbitrary process, but the models presented here

Geochemistry
Geophysics
Geosystems G3G3 PATERSON ET AL.: PALEOINTENSITY SELECTION: NOISE 10.1029/2012GC004046

23 of 26



allow us to put the selection process on a more solid
foundation. The approach outlined in this study
allows us to investigate how various factors influ-
ence paleointensity selection and we come to the
following conclusions.

[85] 1. By considering how experimental noise
influences paleointensity data from hypothetical
ideal samples it is possible to put a lower limit on our
ability to detect non-ideal behavior. Paleointensity
studies should not use selection threshold stricter
than these limits for risk of excluding near ideal
samples that are subject only to experimental noise.

[86] 2. For experiments using zero-field steps these
limits are universal, but the behavior of the original
Thellier-Thellier method is sufficiently different to
require different limits. A set of selection criteria
defined for a Coe experiment should not be used for
a Thellier experiment and vice versa.

[87] 3. It is possible for ideal samples, subject to
expected levels of experimental noise, to yield
inaccurate results that cannot be discriminated by
data selection.

[88] 4. Reorientation uncertainty during measure-
ments is the dominant noise source that can affect
paleointensity data and should the main priority for
noise reduction for all paleointensity studies.
Methods that fix the sample for the duration of the
experiment or that use specialized sample holders
should reduce this influence.

[89] 5. The choice of laboratory field can greatly
influence the effects of experimental noise and we
recommend using a field strength close to that of
the ancient field.

[90] 6. When selecting data careful consideration
must be given to the interplay of different para-
meters, specifically how the choice of fraction
influences other criteria. The sensitivity of DRAT-
parameters to fraction may lead to the rejection of
well behaved data. The d-parameters (dCK and
dTR), however, have no fractional dependence and
yield consistent results irrespective of the choice of
best-fit linear segment and may be more suitable for
consistent data selection.

[91] 7. How the choice of minimum fraction influ-
ences selection parameters and the statistics
describing accuracy and scatter allows us to justify
the use of a minimum fraction for data selection.
We strongly recommend specifying f ≥ 0.35 for all
experimental protocols. This will reduce the likeli-
hood of accepting inaccurate results that are caused
by experimental noise. It also lowers many of the

95% thresholds. The lowering of these thresholds,
below which we cannot distinguish non-ideal behav-
ior from experimental noise, serves to increase the
sensitivity of these parameters to non-ideal effects.

[92] 8. In the presence of experimental noise
unavoidable inaccuracies of up to �6–7% should
be expected when f ≥ 0.35. Any bias from non-
ideal factors will be in addition to this baseline degree
of inaccuracy. Studies that distinguish between
accurate and inaccurate results should use deviations
>6–7% to distinguish between the two groups.

[93] 9. The sensitivity of some parameters to noise
and applied field may diminish their ability to dis-
criminate against non-ideal factors. This is most
notable for pTRM checks DRAT, CDRAT and dpal,
and pTRM tail check dt*. The typically used
threshold values for these parameters should be
relaxed or alternative parameters used. The sensi-
tivity of dt* to noise from a single point (e.g.,
Figure 5d) suggests that dt* may not a robust
parameter, but the efficacy of dt* to distinguish
non-ideal factors need to be tested further.

[94] 10. Future models, particularly those aimed at
defining the selection of paleointensity data, must
incorporate experimental noise in order to provide a
sufficient degree of realism to have practical appli-
cations. Work is currently under way to incorporate
experimental noise into the phenomenological MD
model of Biggin [2006].
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