70 research outputs found

    Case Report: ALK rearranged locally advanced lung adenocarcinoma showing inconsistent radiographic findings and pathological responses during neoadjuvant alectinib therapy

    Get PDF
    Alectinib has been approved as first-line treatment for anaplastic lymphoma kinase (ALK)-positive non-small cell lung carcinoma. Oncologists are also exploring the possibility of applying alectinib in the perioperative period. Here, we present a patient with locally advanced lung adenocarcinoma associated with EML4-ALK fusion mutation, who received neoadjuvant chemotherapy and alectinib treatment, and then underwent thoracoscopic left lower lung lobectomy. The patient initially received eight chemotherapy cycles and achieved partial remission. After eight cycles of chemotherapy, the lymph nodes in the hilar region again enlarged. The patient was then switched to 4 months of alectinib therapy, but no significant lesion changes were detected on imaging during this period. This raised the question of whether the patient developed alectinib resistance. The pathological findings of the postoperative lung lobe specimens indicated extensive necrosis in the tumor area with no residual tumor cells and massive chronic inflammatory cell infiltration around the tumor area, confirming inconsistency between the imaging findings and pathological results. Multi-point tumor specimen sampling was postoperatively performed. Tumor immune-related gene expression was detected in the sample with the help of the PanCancer IO360™ panel based on the nCounter platform. This is a rare case of a patient who was treated with neoadjuvant alectinib and had paradoxical radiographic findings and pathological responses. The possibility that intratumoral immune heterogeneity was responsible for this phenomenon has been discussed. Based on the findings, it is argued that the pathological response should be an important basis for assessing the effectiveness of neoadjuvant alectinib therapy

    Lower land-use emissions responsible for increased net land carbon sink during the slow warming period

    Get PDF
    The terrestrial carbon sink accelerated during 1998–2012, concurrently with the slow warming period, but the mechanisms behind this acceleration are unclear. Here we analyse recent changes in the net land carbon sink (NLS) and its driving factors, using atmospheric inversions and terrestrial carbon models. We show that the linear trend of NLS during 1998–2012 is about 0.17 ± 0.05 Pg C yr−2 , which is three times larger than during 1980–1998 (0.05 ± 0.05 Pg C yr−2). According to terrestrial carbon model simulations, the intensification of the NLS cannot be explained by CO2 fertilization or climate change alone. We therefore use a bookkeeping model to explore the contribution of changes in land-use emissions and find that decreasing land-use emissions are the dominant cause of the intensification of the NLS during the slow warming period. This reduction of land-use emissions is due to both decreased tropical forest area loss and increased afforestation in northern temperate regions. The estimate based on atmospheric inversions shows consistently reduced land-use emissions, whereas another bookkeeping model did not reproduce such changes, probably owing to missing the signal of reduced tropical deforestation. These results highlight the importance of better constraining emissions from land-use change to understand recent trends in land carbon sinks

    A Novel Airspace Planning Algorithm for Cooperative Target Localization

    No full text
    With the development of modern electromagnetic stealth technology and ARM, traditional active radar detection cannot accomplish its detection mission, limited by its ability. Relying on such superior advantages such as imperceptibility, anti-electromagnetic interference and electromagnetic stealth, passive transducers are playing an indispensable and significant role in situation awareness. While, in addition to different passive transducer localization modes and solutions of target’s location, the reasonable planning and optimal layout of passive transducers’ location are other major factors affecting the precision of localization. Planning an optimal airspace for passive transducers is the key problem to improve the monitoring efficiency. This paper proposes the optimal layout algorithm for the cooperative platform in the space based on the geometrical relationship of cooperative localization. For example, the principle of direction location in traditional methods is simple: only two passive sensors can work, but the location accuracy of long-distance targets is low. At the same time, TDOA (Time Difference Of Arrival) location has high accuracy and good stability, but it needs at least three passive sensors to work together, which requires the most resources. In this paper, a platform optimization layout algorithm based on direction and TDOA hybrid positioning is proposed. Compared with direction positioning, it improves the long-distance positioning accuracy, reduces the number of sensors required for TDOA positioning, and reduces the resource occupancy rate. However, the TDOA positioning data mixed with direction positioning data inevitably leads to the decline of overall accuracy. In order to solve these difficulties, the weighted least square method is used to optimize the accuracy. The simulation shows that, within the designated target airspace, the optimal action airspace can be generated automatically based on the platforms’ cooperation mode. If there is no resource limitation, the airspace planning based on TDOA positioning has the highest accuracy for the target. However, in practical application, considering the resource limitation, the hybrid positioning of direction and TDOA can also meet the requirements of high accuracy and high stability. The average error is reduced by more than 45% compared with direction positioning, and the airspace occupancy is reduced by more than 30% compared with TDOA positioning. The goal of minimizing the scope of platform airspace planning is realized

    A Novel Airspace Planning Algorithm for Cooperative Target Localization

    No full text
    With the development of modern electromagnetic stealth technology and ARM, traditional active radar detection cannot accomplish its detection mission, limited by its ability. Relying on such superior advantages such as imperceptibility, anti-electromagnetic interference and electromagnetic stealth, passive transducers are playing an indispensable and significant role in situation awareness. While, in addition to different passive transducer localization modes and solutions of target’s location, the reasonable planning and optimal layout of passive transducers’ location are other major factors affecting the precision of localization. Planning an optimal airspace for passive transducers is the key problem to improve the monitoring efficiency. This paper proposes the optimal layout algorithm for the cooperative platform in the space based on the geometrical relationship of cooperative localization. For example, the principle of direction location in traditional methods is simple: only two passive sensors can work, but the location accuracy of long-distance targets is low. At the same time, TDOA (Time Difference Of Arrival) location has high accuracy and good stability, but it needs at least three passive sensors to work together, which requires the most resources. In this paper, a platform optimization layout algorithm based on direction and TDOA hybrid positioning is proposed. Compared with direction positioning, it improves the long-distance positioning accuracy, reduces the number of sensors required for TDOA positioning, and reduces the resource occupancy rate. However, the TDOA positioning data mixed with direction positioning data inevitably leads to the decline of overall accuracy. In order to solve these difficulties, the weighted least square method is used to optimize the accuracy. The simulation shows that, within the designated target airspace, the optimal action airspace can be generated automatically based on the platforms’ cooperation mode. If there is no resource limitation, the airspace planning based on TDOA positioning has the highest accuracy for the target. However, in practical application, considering the resource limitation, the hybrid positioning of direction and TDOA can also meet the requirements of high accuracy and high stability. The average error is reduced by more than 45% compared with direction positioning, and the airspace occupancy is reduced by more than 30% compared with TDOA positioning. The goal of minimizing the scope of platform airspace planning is realized
    • …
    corecore