186 research outputs found
An energy-saving control strategy for VRF and VAV combined air conditioning system in heating mode
Although variable refrigerant flow (VRF) systems have become attractive due to good energy performances in part load conditions, the shortcoming of no outdoor air intake has not been solved thoroughly. A VRF and VAV combined air conditioning system is proposed to solve this problem. VAV part of the combined system consists of an outdoor air processing (OAP) unit and VAV boxes. Generally the VRF unit operates to maintain indoor temperature and the OAP unit operates to process the outdoor air. A control strategy for the combined system aiming at reducing energy consumption is presented in this paper. When both VRF unit and OAP unit are operating, a load allocation optimization module is executed to find the best load allocation between them to minimize the energy consumption of the combined system. When the allocated load of the OAP unit is very small, the proposed control strategy stops the OAP unit, leaving only the VRF unit to operate to improve the overall energy efficiency of the combined system. When load requirements are met, the OAP unit is restarted and the load allocation optimization module is executed again. The proposed control strategy is evaluated based on the developed simulation platform. Results show that the proposed control strategy can effectively decrease the energy consumption of the combined system
On the synthesis and performance of hierarchical nanoporous TS-1 catalysts
Hierarchical TS-1 zeolite was successfully prepared using chitosan as a sacrificial template. The X-ray diffraction showed that the presence of chitosan with the synthesis precursor had no deleterious effect on the crystallinity and phase purity of this zeolite. X-ray absorption spectroscopy at the Ti K-edge, FTIR and Raman spectroscopies revealed the titanium ions in the zeolite structure have predominantly tetrahedral coordination. However, it appears that the higher chitosan content in the synthesis gel imparted some hydrophilic character to the TS-1 system. Furthermore, the technique adopted for the preparation of the synthesis gel – e.g partially dried or fully dried – appears to affect the amount of framework titanium in the zeolite structure. The calcined form of the chitosan templated TS-1 zeolites exhibited higher cyclohexene conversion compared to the TS-1 material synthesised without this template, but these catalysts showed lower selectivity for cyclohexene epoxide
Thermoluminescence (TL) analysis for otoliths of the wild carps (cyprinoid) from Baiyangdian Lake and Miyun Reservoir: Some implications for monitoring water environment
Otolith is a typical biomineral carrier growing on insides of fish skull with prominent zoning structure formed by alternating layers of protein and calcium carbonate growing around the nucleus. Even though thermoluminescence (TL) analysis on biomineral has been widely used to measure the radiation exposure in the recent twenty years, the TL characteristics of the fish otolith have not yet been reported in literature. TL characteristics of otoliths from the wild carps (cyprinoid) living in the Baiyangdian Lake, Hebei Province and Miyun Reservoir, Beijing City was first studied, and the differences of energy gap (E) between the fish otoliths in the two waters have also been discussed in this paper. The experimental results indicated that TL curve parameters: peak temperature (Tp), luminous intensity (I), integrated intensity (S) and middle width (Wm) for the glow curves of the cyprinoid otoliths from Baiyangdian Lake are greater than those from Miyun reservoir, and the stability of the formers’ TL curve parameters value and energy gap (E) was weaker than the latter. In comparison to the Miyun Reservoir, the analysis manifested that the electrons and vacancies trapped in the otoliths from Baiyangdian Lake are more likely to escape. According to the investigation, the contaminative degree and eutrophication in the water of Baiyangdian Lake was heavier than that of Miyun Reservoir. Therefore, the characteristics of TL growth curves of the cyprinoid otoliths is quite sensitive to heavier contaminated and less contaminated water, and this could be regarded as an important typomorphic biomineral for monitoring the contaminative degree and environment change of the water.Keywords: Cyprinoid otoliths, thermoluminescence, water environment, typomorphic minera
First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice
Recent observations of novel spin-orbit coupled states have generated
tremendous interest in transition metal systems. A prime example is the
state in iridate materials and -RuCl
that drives Kitaev interactions. Here, by tuning the competition between
spin-orbit interaction () and trigonal crystal field
splitting (), we restructure the spin-orbital wave functions
into a novel state that drives Ising interactions. This is
done via a topochemical reaction that converts LiRhO to
AgLiRhO, leading to an enhanced trigonal distortion and a
diminished spin-orbit coupling in the latter compound. Using perturbation
theory, we present an explicit expression for the new state
in the limit realized in
AgLiRhO, different from the conventional
state in the limit realized in LiRhO. The change of ground state is
followed by a dramatic change of magnetism from a 6 K spin-glass in
LiRhO to a 94 K antiferromagnet in AgLiRhO. These
results open a pathway for tuning materials between the two limits and creating
a rich magnetic phase diagram.Comment: 22 pages, 4 figure
Facile Synthesis of Copper Nanoparticles in Glycerol at Room Temperature: Formation Mechanism
A copper sol is usually synthesized by the reduction of a copper precursor with a suitable reducing agent in the presence of a stabilizer. There are few reports regarding the preparation of copper nanoparticles in glycerol without using a stabilizing agent, but at elevated temperatures. The formation of reduced copper (Cu0) is usually verified by a UV-vis spectrophotometer where a ‘red copper sol’ was formed. In the present paper we synthesized the copper sol at room temperature in a glycerol medium using hydrazine as a reducing agent. The chemical states of copper in the sol and their composition were analyzed by X-ray absorption near edge structure spectroscopy (XANES) with the linear composition fitting method. A series-parallel mechanism of the reaction was proposed. An average particle size of 5 ± 1 nm was visualized via transmission electron microscopy (TEM)
Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation
International audienceDeveloping highly active electrocatalysts for oxygen evolution reaction (OER) is critical for the commercial effectiveness of water splitting to produce hydrogen fuels. Low-cost spinel oxides have attracted increasing interest as alternatives to noble-metal-based OER catalysts. A rational design of spinel catalysts can be guided by studying the structural/elemental properties which determine the reaction mechanism and activity. Here, using densit
Simulated sulfur K-edge X-ray absorption spectroscopy database of lithium thiophosphate solid electrolytes
X-ray absorption spectroscopy (XAS) is a premier technique for materials characterization, providing key information about the local chemical environment of the absorber atom. In this work, we develop a database of sulfur K-edge XAS spectra of crystalline and amorphous lithium thiophosphate materials based on the atomic structures reported in Chem. Mater., 34, 6702 (2022). The XAS database is based on simulations using the excited electron and core-hole pseudopotential approach implemented in the Vienna Ab initio Simulation Package. Our database contains 2681 S K-edge XAS spectra for 66 crystalline and glassy structure models, making it the largest collection of first-principles computational XAS spectra for glass/ceramic lithium thiophosphates to date. This database can be used to correlate S spectral features with distinct S species based on their local coordination and short-range ordering in sulfide-based solid electrolytes. The data is openly distributed via the Materials Cloud, allowing researchers to access it for free and use it for further analysis, such as spectral fingerprinting, matching with experiments, and developing machine learning models
Structural Determination of Three Different Series of Compounds as Hsp90 Inhibitors Using 3D-QSAR Modeling, Molecular Docking and Molecular Dynamics Methods
Hsp90 is involved in correcting, folding, maturation and activation of a diverse array of client proteins; it has also been implicated in the treatment of cancer in recent years. In this work, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), molecular docking and molecular dynamics were performed on three different series of Hsp90 inhibitors to build 3D-QSAR models, which were based on the ligand-based or receptor-based methods. The optimum 3D-QSAR models exhibited reasonable statistical characteristics with averaging internal q2 > 0.60 and external r2pred > 0.66 for Benzamide tetrahydro-4H-carbazol-4-one analogs (BT), AT13387 derivatives (AT) and Dihydroxylphenyl amides (DA). The results revealed that steric effects contributed the most to the BT model, whereas H-bonding was more important to AT, and electrostatic, hydrophobic, H-bond donor almost contributed equally to the DA model. The docking analysis showed that Asp93, Tyr139 and Thr184 in Hsp90 are important for the three series of inhibitors. Molecular dynamics simulation (MD) further indicated that the conformation derived from docking is basically consistent with the average structure extracted from MD simulation. These results not only lead to a better understanding of interactions between these inhibitors and Hsp90 receptor but also provide useful information for the design of new inhibitors with a specific activity
- …