97 research outputs found

    Magic ratios for connectivity-driven electrical conductance of graphene-like molecules

    Full text link
    Experiments using a mechanically-controlled break junction and calculations based on density functional theory demonstrate a new magic ratio rule (MRR),which captures the contribution of connectivity to the electrical conductance of graphene-like aromatic molecules. When one electrode is connected to a site i and the other is connected to a site i' of a particular molecule, we assign the molecule a magic integer Mii'. Two molecules with the same aromatic core, but different pairs of electrode connection sites (i,i' and j,j' respectively) possess different magic integers Mii' and Mjj'. Based on connectivity alone, we predict that when the coupling to electrodes is weak and the Fermi energy of the electrodes lies close to the centre of the HOMO-LUMO gap, the ratio of their conductances is equal to (Mii' /Mjj')2. The MRR is exact for a tight binding representation of a molecule and a qualitative guide for real molecules

    Size-resolved particle number emissions in Beijing determined from measured particle size distributions

    Get PDF
    The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions, based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in a diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of the size distributions of particle number emissions in urban environments and for validating emission inventories and models. In the future, the method will be developed by modeling the transport of particles from different sources to obtain more accurate estimates of particle number emissions.Peer reviewe

    Acid-Base Clusters during Atmospheric New Particle Formation in Urban Beijing

    Get PDF
    Molecular clustering is the initial step of atmospheric new particle formation (NPF) that generates numerous secondary particles. Using two online mass spectrometers with and without a chemical ionization inlet, we characterized the neutral clusters and the naturally charged ion clusters during NPF periods in urban Beijing. In ion clusters, we observed pure sulfuric acid (SA) clusters, SA-amine clusters, SA-ammonia (NH3) clusters, and SA-amine-NH3 clusters. However, only SA clusters and SA-amine clusters were observed in the neutral form. Meanwhile, oxygenated organic molecule (OOM) clusters charged by a nitrate ion and a bisulfate ion were observed in ion clusters. Acid-base clusters correlate well with the occurrence of sub-3 nm particles, whereas OOM clusters do not. Moreover, with the increasing cluster size, amine fractions in ion acid-base clusters decrease, while NH3 fractions increase. This variation results from the reduced stability differences between SA-amine clusters and SA-NH3 clusters, which is supported by both quantum chemistry calculations and chamber experiments. The lower average number of dimethylamine (DMA) molecules in atmospheric ion clusters than the saturated value from controlled SA-DMA nucleation experiments suggests that there is insufficient DMA in urban Beijing to fully stabilize large SA clusters, and therefore, other basic molecules such as NH3 play an important role.Peer reviewe

    Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration : A perspective from long-term measurements in Beijing

    Get PDF
    SO2 concentration decreased rapidly in recent years in China due to the implementation of strict control policies by the government. Particulate sulfate (pSO(4)(2-)) and gaseous H2SO4 (SA) are two major products of SO2 and they play important roles in the haze formation and new particle formation (NPF), respectively. We examined the change in pSO(4)(2-) and SA concentrations in response to reduced SO2 concentration using long-term measurement data in Beijing. Simulations from the Community Multiscale Air Quality model with a 2-D Volatility Basis Set (CMAQ/2D-VBS) were used for comparison. From 2013 to 2018, SO2 concentration in Beijing decreased by similar to 81% (from 9.1 ppb to 1.7 ppb). pSO(4)(2-) concentration in submicrometer particles decreased by similar to 60% from 2012-2013 (monthly average of similar to 10 mu g.m(-3)) to 2018-2019 (monthly average of similar to 4 mu g.m(-3)). Accordingly, the fraction of pSO(4)(2-) in these particles decreased from20-30% to b10%. Increased sulfur oxidation ratio was observed both in the measurements and the CMAQ/2D-VBS simulations. Despite the reduction in SO2 concentration, there was no obvious decrease in SA concentration based on data from several measuring periods from 2008 to 2019. This was supported by the increased SA:SO2 ratio with reduced SO2 concentration and condensation sink. NPF frequency in Beijing between 2004 and 2019 remains relatively constant. This constant NPF frequency is consistent with the relatively stable SA concentration in Beijing, while different from some other cities where NPF frequency was reported to decrease with decreased SO2 concentrations. (C) 2020 Elsevier B.V. All rights reserved.Peer reviewe

    Variation of size-segregated particle number concentrations in wintertime Beijing

    Get PDF
    The spatial and temporal variability of the number size distribution of aerosol particles is an indicator of the dynamic behavior of Beijing's atmospheric pollution cocktail. This variation reflects the strength of different primary and secondary sources, such as traffic and new particle formation, as well as the main processes affecting the particle population. In this paper, we report size-segregated particle number concentrations observed at a newly developed Beijing station during the winter of 2018. Our measurements covered particle number size distributions over the diameter range of 1.5 nm-1 mu m (cluster mode, nucleation mode, Aitken mode and accumulation mode), thus being descriptive of a major fraction of the processes taking place in the atmosphere of Beijing. Here we focus on explaining the concentration variations in the observed particle modes, by relating them to the potential aerosol sources and sinks, and on understanding the connections between these modes. We considered haze days and new particle formation event days separately. Our results show that during the new particle formation (NPF) event days increases in cluster mode particle number concentration were observed, whereas during the haze days high concentrations of accumulation mode particles were present. There was a tight connection between the cluster mode and nucleation mode on both NPF event and haze days. In addition, we correlated the particle number concentrations in different modes with concentrations of trace gases and other parameters measured at our station. Our results show that the particle number concentration in all the modes correlated with NOx, which reflects the contribution of traffic to the whole submicron size range. We also estimated the contribution of ion-induced nucleation in Beijing, and we found this contribution to be negligible.Peer reviewe

    Electrochemical CO2 Reduction - A Critical View on Fundamentals, Materials and Applications

    Get PDF
    The electrochemical reduction of CO2 has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO2 in water, the maximum CO2 reduction current which could be drawn falls in the range of 0.01–0.02 A cm–2. This is at least an order of magnitude lower current density than the requirement to make CO2-electrolysis a technically and economically feasible option for transformation of CO2 into chemical feedstock or fuel thereby closing the CO2 cycle. This work attempts to give a short overview on the status of electrochemical CO2 reduction with respect to challenges at the electrolysis cell as well as at the catalyst level. We will critically discuss possible pathways to increase both operating current density and conversion efficiency in order to close the gap with established energy conversion technologies

    Sulfuric acid-amine nucleation in urban Beijing

    Get PDF
    New particle formation (NPF) is one of the major sources of atmospheric ultrafine particles. Due to the high aerosol and trace gas concentrations, the mechanism and governing factors for NPF in the polluted atmospheric boundary layer may be quite different from those in clean environments, which is however less understood. Herein, based on long-term atmospheric measurements from January 2018 to March 2019 in Beijing, the nucleation mechanism and the influences of H2SO4 concentration, amine concentrations, and aerosol concentration on NPF are quantified. The collision of H2SO4-amine clusters is found to be the dominating mechanism to initialize NPF in urban Beijing. The coagulation scavenging due to the high aerosol concentration is a governing factor as it limits the concentration of H2SO4-amine clusters and new particle formation rates. The formation of H2SO4-amine clusters in Beijing is sometimes limited by low amine concentrations. Summarizing the synergistic effects of H2SO4 concentration, amine concentrations, and aerosol concentration, we elucidate the governing factors for H2SO4-amine nucleation for various conditions.Peer reviewe

    Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China

    Get PDF
    Secondary aerosol formation in the aging process of primary emission is the main reason for haze pollution in eastern China. Pollution evolution with photochemical age was studied for the first time at a comprehensive field observation station during winter in Beijing. The photochemical age was used as an estimate of the time scale attributed to the aging process and was estimated from the ratio of toluene to benzene in this study. A low photochemical age indicates a fresh emission. The photochemical age of air masses during new particle formation (NPF) days was lower than that on haze days. In general, the strongest NPF events, along with a peak of the formation rate of 1.5 nm(J(1.5)) and 3 nmparticles (J(3)), were observed when the photochemical age was between 12 and 24 h while rarely took place with photochemical ages less than 12 h. When photochemical age was larger than 48 h, haze occurred and NPF was suppressed. The sources and sinks of nanoparticles had distinct relation with the photochemical age. Our results show that the condensation sink (CS) showed a valley with photochemical ages ranging from 12 to 24 h, while H2SO4 concentration showed no obvious trend with the photochemical age. The high concentrations of precursor vapours within an air mass lead to persistent nucleation with photochemical age ranging from 12 to 48 h in winter. Coincidently, the fast increase of PM2.5 mass was also observed during this range of photochemical age. Noteworthy, CS increased with the photochemical age on NPF days only, which is the likely reason for the observation that the PM2.5 mass increased faster with photochemical age on NPF days compared with other days. The evolution of particles with the photochemical age provides new insights into understanding how particles originating from NPF transform to haze pollution. (C) 2020 Elsevier B.V. All rights reserved.Peer reviewe

    Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing

    Get PDF
    Understanding the atmospheric new particle formation (NPF) process within the global range is important for revealing the budget of atmospheric aerosols and their impacts. We investigated the seasonal characteristics of NPF in the urban environment of Beijing. Aerosol size distributions down to similar to 1 nm and H2SO4 concentration were measured during 2018-2019. The observed formation rate of 1.5 nm particles (J(1.5)) is significantly higher than those in the clean environment, e.g., Hyytiala, whereas the growth rate is not significantly different. Both J(1.5) and NPF frequency in urban Beijing show a clear seasonal variation with maxima in winter and minima in summer, while the observed growth rates are generally within the same range around the year. We show that ambient temperature is a governing factor driving the seasonal variation of J(1.5). In contrast, the condensation sink and the daily maximum H2SO4 concentration show no significant seasonal variation during the NPF periods. In all four seasons, condensation of H2SO4 and (H2SO4)(n)(amine)(n) clusters contributes significantly to the growth rates in the sub-3 nm size range, whereas it is less important for the observed growth rates of particles above 3 nm. Therefore, other species are always needed for the growth of larger particles.Peer reviewe

    A 3D study on the amplification of regional haze and particle growth by local emissions

    Get PDF
    The role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015-2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to similar to 60% of the accumulation mode particles in the Beijing-Tianjin-Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3-40 nm) via NPF does not reduce after emission controls.Peer reviewe
    • …
    corecore