11 research outputs found

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Gold Nanorods Based Air Scanning Electron Microscopy and Diffusion Reflection Imaging for Mapping Tumor Margins in Squamous Cell Carcinoma

    No full text
    A critical challenge arising during a surgical procedure for tumor removal is the determination of tumor margins. Gold nanorods (GNRs) conjugated to epidermal growth factor receptors (EGFR) (GNRs-EGFR) have long been used in the detection of cancerous cells as the expression of EGFR dramatically increases once the tissue becomes cancerous. Optical techniques for the identification of these GNRs-EGFR in tumor are intensively developed based on the unique scattering and absorption properties of the GNRs. In this study, we investigate the distribution of the GNRs in tissue sections presenting squamous cell carcinoma (SCC) to evaluate the SCC margins. Air scanning electron microscopy (airSEM), a novel, high resolution microscopy is used, enabling to localize and actually visualize nanoparticles on the tissue. The airSEM pictures presented a gradient of GNRs from the tumor to normal epithelium, spread in an area of 1 mm, suggesting tumor margins of 1 mm. Diffusion reflection (DR) measurements, performed in a resolution of 1 mm, of human oral SCC have shown a clear difference between the DR profiles of the healthy epithelium and the tumor itself

    HCV genotype-1 subtypes and resistance-associated substitutions in drug-naive and in direct-acting antiviral treatment failure patients

    No full text
    Background: Direct-acting antiviral (DAA) treatment regimens and response rates of patients with HCV genotype-1 (GT1) are currently considered subtype-dependent. Identification of clinically relevant resistance-associated substitutions (RASs) in the NS3 and NS5A proteins at baseline and in DAA failures, may also impact clinical decisions. Methods: In a multicentre cohort study (n=308), NS3 or NS5B sequencing (n=248) was used to discriminate between GT1 subtypes. The correlation between baseline NS3 and NS5A RASs on the 12-week sustained virological response (SVR12) rates of 160 of the patients treated with second-generation DAAs was also assessed. Posttreatment resistance analysis was performed on samples from 58 patients exhibiting DAA virological failure. Results: GT1a, GT1b and GT1d subtypes were identified in 23.0%, 75.4% and 1.2% of tested samples. GT1b was most prevalent (97.7%, 128/131) among patients born in the former Soviet Union. The Q80K NS3 RAS was identified in 17.5% (10/57) of the GT1a carriers, most of whom were Israeli-born. NS3 and NS5A baseline RASs showed a negligible correlation with SVR12 rates. Treatment-emergent RASs were observed among 8.9% (4/45) and 76.9% (10/13) of first-and second-generation DAA failures, respectively, with D168V/E (NS3), Y93H and L31M (NS5A) being the most prevalent mutations. Conclusions: NS3 sequencing analysis can successfully discriminate between GT1 subtypes and identify NS3 amino acid substitutions. While pre-treatment NS3 and NS5A RASs marginally affect second-generation DAA SVR12 rates, post-treatment resistance analysis should be considered prior to re-therapy

    Correlates of protection for booster doses of the SARS-CoV-2 vaccine BNT162b2

    No full text
    Abstract Vaccination, especially with multiple doses, provides substantial population-level protection against COVID-19, but emerging variants of concern (VOC) and waning immunity represent significant risks at the individual level. Here we identify correlates of protection (COP) in a multicenter prospective study following 607 healthy individuals who received three doses of the Pfizer-BNT162b2 vaccine approximately six months prior to enrollment. We compared 242 individuals who received a fourth dose to 365 who did not. Within 90 days of enrollment, 239 individuals contracted COVID-19, 45% of the 3-dose group and 30% of the four-dose group. The fourth dose elicited a significant rise in antibody binding and neutralizing titers against multiple VOCs reducing the risk of symptomatic infection by 37% [95%CI, 15%-54%]. However, a group of individuals, characterized by low baseline titers of binding antibodies, remained susceptible to infection despite significantly increased neutralizing antibody titers upon boosting. A combination of reduced IgG levels to RBD mutants and reduced VOC-recognizing IgA antibodies represented the strongest COP in both the 3-dose group (HR = 6.34, p = 0.008) and four-dose group (HR = 8.14, p = 0.018). We validated our findings in an independent second cohort. In summary combination IgA and IgG baseline binding antibody levels may identify individuals most at risk from future infections
    corecore