34 research outputs found

    Inhibition of H2 and O2 Recombination: The Key to a Most Efficient Single‐Atom Co‐Catalyst for Photocatalytic H2 Evolution from Plain Water

    Get PDF
    Abstract In the present work, it is shown that anodic TiO2 nanotubes (NTs) can be decorated with Pt, Pd, Rh, and Au single atoms (SAs) by a simple “dark deposition” approach. Such TiO2 NTs with surface trapped noble metal SAs provide a high activity for photocatalytic H2 generation from pure water, i.e., in absence of a sacrificial agent. However, noble metals also act as active centers in the undesired hydrogen back‐oxidation (H2 + O2 → H2O), leading to a decrease in the overall photocatalytic H2 production efficiency. Here it is reported that the use of noble metal co‐catalysts, in the form of single atoms, can inhibit this recombination. From the different noble‐metal SAs investigated, Pd SAs yield the highest H2 production rate of 0.381 µmol h−1 cm−1 at a density of 0.41 × 105 Pd atoms µm−2. Overall, the results provide a path to a highly efficient photocatalytic performance for water splitting by the suppression of the H2/O2 recombination, which can be effectively achieved using Pd in the form of SAs as photocatalytic co‐catalysts

    Amorphous NiCu Thin Films Sputtered on TiO<sub>2</sub> Nanotube Arrays:A Noble-Metal Free Photocatalyst for Hydrogen Evolution

    Get PDF
    Abstract In this work, NiCu co‐catalysts on TiO2 are studied for photocatalytic hydrogen evolution. NiCu co‐catalyst films are deposited at room temperature by argon plasma sputtering on high aspect‐ratio anodic TiO2 nanotubes. To tune the Ni : Cu atomic ratio, alloys of various compositions were used as sputtering targets. Such co‐catalyst films are found to be amorphous with small nanocrystalline domains. A series of parameters is investigated, i. e., i) Ni : Cu relative ratio in the sputtered films, ii) NiCu film thickness, and iii) thickness of the TiO2 nanotube layers. The highest photocatalytic activity is obtained with 8 μm long TiO2 nanotubes, sputter‐coated with a 10 nm‐thick NiCu films with a 1 : 1 Ni : Cu atomic ratio. This photocatalyst reaches a stable hydrogen evolution rate of 186 μL h−1 cm−2, 4.6 and 3 times higher than that of Ni‐ and Cu‐TiO2, respectively, demonstrating a synergistic co‐catalytic effect of Ni and Cu in the alloy co‐catalyst film

    Structural reorientation and compaction of porous MoS2 coatings during wear testing

    Get PDF
    Industrial upscaling frequently results in a different coating microstructure than the laboratory prototypes presented in the literature. Here, we investigate the wear behavior of physical vapor deposited (PVD) MoS2 coatings: A dense, nanocrystalline MoS2 coating, and a porous, prismatic-textured MoS2 coating. Transmission electron microscopy (TEM) investigations before and after wear testing evidence a crystallographic reorientation towards a basal texture in both samples. A basal texture is usually desirable due to its low-friction properties. This favorable reorientation is associated to a tribological compaction of the porous specimens. Following running-in, sliding under high contact pressure ultimately leads to a wear rate as small as for an ideal chemical vapor deposited (CVD) grown bulk MoS2 single crystal reference. This suggests that the imperfections of industrial grade MoS2 coatings can be remediated by a suitable pretreatment

    ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics

    Get PDF
    Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over the ZnS interlayer thickness on the ångström scale (0-1.5 nm) and to deposit highly pure Sb2S3. Our systematic study of the photovoltaic and optoelectronic properties of these devices by impedance spectroscopy and transient absorption concludes that the optimum ZnS interlayer thickness of 1.0 nm achieves the best balance between the beneficial effect of an increased recombination resistance at the interface and the deleterious barrier behavior of the wide-bandgap semiconductor ZnS. This optimization allows us to reach an overall power conversion efficiency of 5.09% in planar configuration

    Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire

    Get PDF
    Supersaturated Ni-Au solid solution particles were synthesized by rapid solid-state dewetting of bilayer thin films deposited onto c-plane sapphire single-crystals. Rapid thermal annealing above the miscibility gap of the Ni-Au system followed by quenching to room temperature resulted in textured and faceted submicron-sized particles as a function of alloying content in the range of 0-28 at% Au. Morphologically, the observed kinetic crystal shapes are confined by close-packed planes; in addition, high-index facets are identified as a function of alloying content by TEM cross-sectioning and equilibrium crystal shape simulations. All samples exhibit a distinct out-of-plane as well as in-plane texture along densely packed directions. Lattice parameters extracted from independent orthogonal X-ray and electron diffraction techniques prove the formation of a solid solution without tetragonal distortion imposed by the sapphire substrate. At the particle-substrate interface of highly alloyed particles segregation of Au atoms as well as dislocations in stand-off position are found. These observations are in-line with a semi-coherent interface, where Au segregation is triggered by the reduction of the overall strain energy due to: (i) a lower shear modulus on the particle side of the interface, (ii) the shifting of misfit dislocations in stand-off position further away from the stiffer substrate and (iii) a reduction of intrinsic misfit dislocation strain energy on the tensile side. In addition, the mechanical properties of pure and alloyed particles were characterized by in situ compression experiments in the SEM. Typical force-displacement data of defect-free single-crystals were obtained, reaching the theoretical strength of Ni for particles smaller than 400 nm. Alloying changes the mechanical response from an intermittent and discrete plastic flow behavior into a homogeneous deformation regime at large compressive strain

    Investigation of the foil structure and corrosion mechanisms of modern Zwischgold using advanced analysis techniques

    Full text link
    Zwischgold is a two-sided metal foil made by adhering a gold leaf over a silver leaf to present a gold surface while using less gold than gold foils. Corroded Zwischgold surfaces appear dark, accompanied by gloss loss and possible mechanical stability issues. Zwischgold applied artefacts are commonly found in museums and churches across Europe and they currently face an uncertain future as conservators have little knowledge to base conservation treatments on. We present a comprehensive material analysis of Zwischgold models through advanced characterization techniques including focused ion beam coupled with scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM), time-of-flight secondary ion mass spectrometry (TOF-SIMS) and Rutherford backscattering spectrometry (RBS). Complementary information on the foil thickness, sharpness of the gold-silver interface, gold purity, and the formation as well as distribution of corrosion products on Zwischgold models have been obtained, representing a starting point for understanding the morphology and the long-term chemistry of Zwischgold artefacts. (C) 2017 The Authors. Published by Elsevier Masson SAS

    Noncovalent Liquid Phase Functionalization of 2H-WS2 with PDI: An Energy Conversion Platform with Long-Lived Charge Separation

    Get PDF
    Transition metal dichalcogenides are attractive 2D materials in the context of solar energy conversion. Previous investigations have focused predominantly on the properties of these systems. The realization of noncovalent hybrids with, for example, complementary electroactive materials remains underexplored to this date for exfoliated WS2. In this contribution, we explore WS2 by means of exfoliation and integration together with visible light-absorbing and electron-accepting perylene diimides into versatile electron-donor acceptor hybrids. Important is the distinct electron-donating feature of WS2. Detailed spectroscopic investigations of WS2−PDI confirm the electron donor/acceptor nature of the hybrid and indicate that green light photoexcitation leads to the formation of long-lived WS2•+−PDI•− charge-separated states
    corecore