34 research outputs found
Inhibition of H2 and O2 Recombination: The Key to a Most Efficient Single‐Atom Co‐Catalyst for Photocatalytic H2 Evolution from Plain Water
Abstract
In the present work, it is shown that anodic TiO2 nanotubes (NTs) can be decorated with Pt, Pd, Rh, and Au single atoms (SAs) by a simple “dark deposition” approach. Such TiO2 NTs with surface trapped noble metal SAs provide a high activity for photocatalytic H2 generation from pure water, i.e., in absence of a sacrificial agent. However, noble metals also act as active centers in the undesired hydrogen back‐oxidation (H2 + O2 → H2O), leading to a decrease in the overall photocatalytic H2 production efficiency. Here it is reported that the use of noble metal co‐catalysts, in the form of single atoms, can inhibit this recombination. From the different noble‐metal SAs investigated, Pd SAs yield the highest H2 production rate of 0.381 µmol h−1 cm−1 at a density of 0.41 × 105 Pd atoms µm−2. Overall, the results provide a path to a highly efficient photocatalytic performance for water splitting by the suppression of the H2/O2 recombination, which can be effectively achieved using Pd in the form of SAs as photocatalytic co‐catalysts
Amorphous NiCu Thin Films Sputtered on TiO<sub>2</sub> Nanotube Arrays:A Noble-Metal Free Photocatalyst for Hydrogen Evolution
Abstract
In this work, NiCu co‐catalysts on TiO2 are studied for photocatalytic hydrogen evolution. NiCu co‐catalyst films are deposited at room temperature by argon plasma sputtering on high aspect‐ratio anodic TiO2 nanotubes. To tune the Ni : Cu atomic ratio, alloys of various compositions were used as sputtering targets. Such co‐catalyst films are found to be amorphous with small nanocrystalline domains. A series of parameters is investigated, i. e., i) Ni : Cu relative ratio in the sputtered films, ii) NiCu film thickness, and iii) thickness of the TiO2 nanotube layers. The highest photocatalytic activity is obtained with 8 μm long TiO2 nanotubes, sputter‐coated with a 10 nm‐thick NiCu films with a 1 : 1 Ni : Cu atomic ratio. This photocatalyst reaches a stable hydrogen evolution rate of 186 μL h−1 cm−2, 4.6 and 3 times higher than that of Ni‐ and Cu‐TiO2, respectively, demonstrating a synergistic co‐catalytic effect of Ni and Cu in the alloy co‐catalyst film
Structural reorientation and compaction of porous MoS2 coatings during wear testing
Industrial upscaling frequently results in a different coating microstructure
than the laboratory prototypes presented in the literature. Here, we
investigate the wear behavior of physical vapor deposited (PVD) MoS2 coatings:
A dense, nanocrystalline MoS2 coating, and a porous, prismatic-textured MoS2
coating. Transmission electron microscopy (TEM) investigations before and after
wear testing evidence a crystallographic reorientation towards a basal texture
in both samples. A basal texture is usually desirable due to its low-friction
properties. This favorable reorientation is associated to a tribological
compaction of the porous specimens. Following running-in, sliding under high
contact pressure ultimately leads to a wear rate as small as for an ideal
chemical vapor deposited (CVD) grown bulk MoS2 single crystal reference. This
suggests that the imperfections of industrial grade MoS2 coatings can be
remediated by a suitable pretreatment
ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics
Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over the ZnS interlayer thickness on the ångström scale (0-1.5 nm) and to deposit highly pure Sb2S3. Our systematic study of the photovoltaic and optoelectronic properties of these devices by impedance spectroscopy and transient absorption concludes that the optimum ZnS interlayer thickness of 1.0 nm achieves the best balance between the beneficial effect of an increased recombination resistance at the interface and the deleterious barrier behavior of the wide-bandgap semiconductor ZnS. This optimization allows us to reach an overall power conversion efficiency of 5.09% in planar configuration
Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire
Supersaturated Ni-Au solid solution particles were synthesized by rapid solid-state dewetting of bilayer thin films deposited onto c-plane sapphire single-crystals. Rapid thermal annealing above the miscibility gap of the Ni-Au system followed by quenching to room temperature resulted in textured and faceted submicron-sized particles as a function of alloying content in the range of 0-28 at% Au. Morphologically, the observed kinetic crystal shapes are confined by close-packed planes; in addition, high-index facets are identified as a function of alloying content by TEM cross-sectioning and equilibrium crystal shape simulations. All samples exhibit a distinct out-of-plane as well as in-plane texture along densely packed directions. Lattice parameters extracted from independent orthogonal X-ray and electron diffraction techniques prove the formation of a solid solution without tetragonal distortion imposed by the sapphire substrate. At the particle-substrate interface of highly alloyed particles segregation of Au atoms as well as dislocations in stand-off position are found. These observations are in-line with a semi-coherent interface, where Au segregation is triggered by the reduction of the overall strain energy due to: (i) a lower shear modulus on the particle side of the interface, (ii) the shifting of misfit dislocations in stand-off position further away from the stiffer substrate and (iii) a reduction of intrinsic misfit dislocation strain energy on the tensile side. In addition, the mechanical properties of pure and alloyed particles were characterized by in situ compression experiments in the SEM. Typical force-displacement data of defect-free single-crystals were obtained, reaching the theoretical strength of Ni for particles smaller than 400 nm. Alloying changes the mechanical response from an intermittent and discrete plastic flow behavior into a homogeneous deformation regime at large compressive strain
Recommended from our members
Long-Living Holes in Grey Anatase TiO2 Enable Noble-Metal-Free and Sacrificial-Agent-Free Water Splitting
Titanium dioxide has been the benchmark semiconductor in photocatalysis for more than 40 years. Full water splitting, that is, decomposing water into H2 and O2 in stoichiometric amounts and with an acceptable activity, still remains a challenge, even when TiO2-based photocatalysts are used in combination with noble-metal co-catalysts. The bottleneck of anatase-type TiO2 remains the water oxidation, that is, the hole transfer reaction from pristine anatase to the aqueous environment. In this work, we report that “grey” (defect engineered) anatase can provide a drastically enhanced lifetime of photogenerated holes, which, in turn, enables an efficient oxidation reaction of water to peroxide via a two-electron pathway. As a result, a Ni@grey anatase TiO2 catalyst can be constructed with an impressive performance in terms of photocatalytic splitting of neutral water into H2 and a stoichiometric amount of H2O2 without the need of any noble metals or sacrificial agents. The finding of long hole lifetimes in grey anatase opens up a wide spectrum of further photocatalytic applications of this material. © 2020 The Authors. Published by Wiley-VCH Gmb
Investigation of the foil structure and corrosion mechanisms of modern Zwischgold using advanced analysis techniques
Zwischgold is a two-sided metal foil made by adhering a gold leaf over a silver leaf to present a gold surface while using less gold than gold foils. Corroded Zwischgold surfaces appear dark, accompanied by gloss loss and possible mechanical stability issues. Zwischgold applied artefacts are commonly found in museums and churches across Europe and they currently face an uncertain future as conservators have little knowledge to base conservation treatments on. We present a comprehensive material analysis of Zwischgold models through advanced characterization techniques including focused ion beam coupled with scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM), time-of-flight secondary ion mass spectrometry (TOF-SIMS) and Rutherford backscattering spectrometry (RBS). Complementary information on the foil thickness, sharpness of the gold-silver interface, gold purity, and the formation as well as distribution of corrosion products on Zwischgold models have been obtained, representing a starting point for understanding the morphology and the long-term chemistry of Zwischgold artefacts. (C) 2017 The Authors. Published by Elsevier Masson SAS
Noncovalent Liquid Phase Functionalization of 2H-WS2 with PDI: An Energy Conversion Platform with Long-Lived Charge Separation
Transition metal dichalcogenides are attractive 2D materials
in the context of solar energy conversion. Previous investigations have
focused predominantly on the properties of these systems. The realization
of noncovalent hybrids with, for example, complementary electroactive
materials remains underexplored to this date for exfoliated WS2. In this
contribution, we explore WS2 by means of exfoliation and integration
together with visible light-absorbing and electron-accepting perylene
diimides into versatile electron-donor acceptor hybrids. Important is the
distinct electron-donating feature of WS2. Detailed spectroscopic
investigations of WS2−PDI confirm the electron donor/acceptor nature
of the hybrid and indicate that green light photoexcitation leads to the
formation of long-lived WS2•+−PDI•− charge-separated states