2,333 research outputs found

    Highway Subsurface Exploration

    Get PDF

    3D integrated superconducting qubits

    Get PDF
    As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1T_1, T2,echo>20 μT_{2,\rm{echo}} > 20\,\mus) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips

    Field Investigation of County Road Bases and Subgrades

    Get PDF
    This bulletin focuses on the investigation, sampling, and testing of in-place wearing surface materials, in-place base materials, and in-place subgrade materials in advance of paving. This is especially important the first time the road is to be blacktopped. However, the investigation and testing methods suggested herein are equally applicable to existing blacktop pavements needing reconstruction. The test methods focus on two quick field tests that have been developed through research to measure equivalent CBR values. CBR is a measure of the load-carrying capacity of base or subgrade materials. The methods and procedures set forth in this bulletin should go far in helping county road officials plan for a better, more efficient use of county highway construction funds

    Program for the evaluation of structural reinforced plastic materials at cryogenic temperatures, phase ii annual and fourth quarterly report, 29 jun. 1964 - 30 jun. 1965

    Get PDF
    Evaluation of procedures, test specimens, and test techniques for application to structural reinforced plastic materials at cryogenic temperature

    Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    Full text link
    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.Comment: 18 pages, 9 figure
    • …
    corecore