2,408 research outputs found
Low-energy photoelectron transmission through aerosol overlayers
The transmission of low-energy (<1.8eV) photoelectrons through the shell of
core-shell aerosol particles is studied for liquid squalane, squalene, and DEHS
shells. The photoelectrons are exclusively formed in the core of the particles
by two-photon ionization. The total photoelectron yield recorded as a function
of shell thickness (1-80nm) shows a bi-exponential attenuation. For all
substances, the damping parameter for shell thicknesses below 15nm lies between
8 and 9nm, and is tentatively assigned to the electron attenuation length at
electron kinetic energies of ~0.5-1eV. The significantly larger damping
parameters for thick shells (> 20nm) are presumably a consequence of distorted
core-shell structures. A first comparison of aerosol and traditional thin film
overlayer methods is provided
Report of the panel on earth structure and dynamics, section 6
The panel identified problems related to the dynamics of the core and mantle that should be addressed by NASA programs. They include investigating the geodynamo based on observations of the Earth's magnetic field, determining the rheology of the mantle from geodetic observations of post-glacial vertical motions and changes in the gravity field, and determining the coupling between plate motions and mantle flow from geodetic observations of plate deformation. Also emphasized is the importance of support for interdisciplinary research to combine various data sets with models which couple rheology, structure and dynamics
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
We propose angle-resolved photoelectron spectroscopy of aerosol particles as
an alternative way to determine the electron mean free path of low energy
electrons in solid and liquid materials. The mean free path is obtained from
fits of simulated photoemission images to experimental ones over a broad range
of different aerosol particle sizes. The principal advantage of the aerosol
approach is twofold. Firstly, aerosol photoemission studies can be performed
for many different materials, including liquids. Secondly, the size-dependent
anisotropy of the photoelectrons can be exploited in addition to size-dependent
changes in their kinetic energy. These finite size effects depend in different
ways on the mean free path and thus provide more information on the mean free
path than corresponding liquid jet, thin film, or bulk data. The present
contribution is a proof of principle employing a simple model for the
photoemission of electrons and preliminary experimental data for potassium
chloride aerosol particles
Extrasolar planets and brown dwarfs around A-F type stars - VII. Theta Cygni radial velocity variations: planets or stellar phenomenon?
(abridged) In the frame of the search for extrasolar planets and brown dwarfs
around early-type main-sequence stars, we present the results obtained on the
early F-type star Theta Cygni. Elodie and Sophie at OHP were used to obtain the
spectra. Our dedicated radial-velocity measurement method was used to monitor
the star's radial velocities over five years. We also use complementary, high
angular resolution and high-contrast images taken with PUEO at CFHT. We show
that Theta Cygni radial velocities are quasi-periodically variable, with a
~150-day period. These variations are not due to the ~0.35-Msun stellar
companion that we detected in imaging at more than 46 AU from the star. The
absence of correlation between the bisector velocity span variations and the
radial velocity variations for this 7 km/s vsini star, as well as other
criteria indicate that the observed radial velocity variations are not due to
stellar spots. The observed amplitude of the bisector velocity span variations
also seems to rule out stellar pulsations. However, we observe a peak in the
bisector velocity span periodogram at the same period as the one found in the
radial velocity periodogram, which indicates a probable link between these
radial velocity variations and the low amplitude lineshape variations which are
of stellar origin. Long-period variations are not expected from this type of
star to our knowledge. If a stellar origin (hence of new type) was to be
confirmed for these long-period radial velocity variations, this would have
several consequences on the search for planets around main-sequence stars, both
in terms of observational strategy and data analysis. An alternative
explanation for these variable radial velocities is the presence of at least
one planet of a few Jupiter masses orbiting at less than 1 AU. (abridged)Comment: 9 pages, accepted in A
Mammalian Clusterin associated protein 1 is an evolutionarily conserved protein required for ciliogenesis
BACKGROUND: Clusterin associated protein 1 (CLUAP1) was initially characterized as a protein that interacts with clusterin, and whose gene is frequently upregulated in colon cancer. Although the consequences of these observations remain unclear, research of CLUAP1 homologs in C. elegans and zebrafish indicates that it is needed for cilia assembly and maintenance in these models. To begin evaluating whether Cluap1 has an evolutionarily conserved role in cilia in mammalian systems and to explore the association of Cluap1 with disease pathogenesis and developmental abnormalities, we generated Cluap1 mutant mice. METHODS: Cluap1 mutant embryos were generated and examined for gross morphological and anatomical defects using light microscopy. Reverse transcription PCR, β-galactosidase staining assays, and immunofluorescence analysis were used to determine the expression of the gene and localization of the protein in vivo and in cultured cell lines. We also used immunofluorescence analysis and qRT-PCR to examine defects in the Sonic hedgehog signaling pathway in mutant embryos. RESULTS: Cluap1 mutant embryos die in mid-gestation, indicating that it is necessary for proper development. Mutant phenotypes include a failure of embryonic turning, an enlarged pericardial sac, and defects in neural tube development. Consistent with the diverse phenotypes, Cluap1 is widely expressed. Furthermore, the Cluap1 protein localizes to primary cilia, and mutant embryos were found to lack cilia at embryonic day 9.5. The phenotypes observed in Cluap1 mutant mice are indicative of defects in Sonic hedgehog signaling. This was confirmed by analyzing hedgehog signaling activity in Cluap1 mutants, which revealed that the pathway is repressed. CONCLUSIONS: These data indicate that the function of Cluap1 is evolutionarily conserved with regard to ciliogenesis. Further, the results implicate mammalian Cluap1 as a key regulator of hedgehog signaling and as an intraflagellar transport B complex protein. Future studies on mammalian Cluap1 utilizing this mouse model may provide insights into the role for Cluap1 in intraflagellar transport and the association with colon cancer and cystic kidney disorders
Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse
Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans
Report of Feasibility Study Task Force for Marietta Truck Growers Association
Exact date of working paper unknown
Independent Evaluation of Phase 1 of the Affordable Medicines Facility - malaria (AMFm), Multi-Country Independent Evaluation Final Report
The success of malaria control efforts depends on a high level of coverage in the use of effective antimalarials such as artemisinin-based combination therapies (ACTs). Although these anti-malarials have been procured in large amounts by countries, evidence suggests that
ACT use still remains far below target levels. In response to this issue, the Affordable Medicines Facility – malaria (AMFm) hosted by the Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund) was set up. AMFm comprises three key elements: (i) price reductions through negotiations with ACT manufacturers; (ii) a buyer subsidy through a ‘co-payment’ for ACTs at the top of the global supply chain; and (iii) supporting interventions to promote appropriate use of ACTs. Examples of these supporting interventions include training providers and outreach to communities to promote ACT use. All ACTs subsidized through AMFm bear a green leaf logo on their packaging. The four main objectives of AMFm are to: (i) increase ACT affordability; (ii) increase ACT availability; (iii) increase ACT use, including among vulnerable groups; and (iv) “crowd out” oral artemisinin monotherapies, chloroquine and sulfadoxine-pyrimethamine (SP) by increasing the market share for ACTs
A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants
Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.
Characterizing Multi-planet Systems with Classical Secular Theory
Classical secular theory can be a powerful tool to describe the qualitative
character of multi-planet systems and offer insight into their histories. The
eigenmodes of the secular behavior, rather than current orbital elements, can
help identify tidal effects, early planet-planet scattering, and dynamical
coupling among the planets, for systems in which mean-motion resonances do not
play a role. Although tidal damping can result in aligned major axes after all
but one eigenmode have damped away, such alignment may simply be fortuitous. An
example of this is 55 Cancri (orbital solution of Fischer et al., 2008) where
multiple eigenmodes remain undamped. Various solutions for 55 Cancri are
compared, showing differing dynamical groupings, with implications for the
coupling of eccentricities and for the partitioning of damping among the
planets. Solutions for orbits that include expectations of past tidal evolution
with observational data, must take into account which eigenmodes should be
damped, rather than expecting particular eccentricities to be near zero.
Classical secular theory is only accurate for low eccentricity values, but
comparison with other results suggests that it can yield useful qualitative
descriptions of behavior even for moderately large eccentricity values, and may
have advantages for revealing underlying physical processes and, as large
numbers of new systems are discovered, for triage to identify where more
comprehensive dynamical studies should have priority.Comment: Published in Celestial Mechanics and Dynamical Astronomy, 25 pages,
10 figure
- …
