15 research outputs found

    Azulene-based compounds for targeting orexin receptors

    Get PDF
    A library of 70 000 synthetically accessible azulene-based compounds was virtually screened at the OX2 receptor. Based on the results, a series of azulene derivatives was synthesized and the binding to and activation of both orexin receptor subtypes were assessed. Two most promising binders were determined to have inhibition constants in the 3-9 mu M range and two other compounds showed weak OX2 receptor agonism. Furthermore, three compounds exhibited a concentration-dependent potentiation of the response to orexin-A at the OX1 but not the OX2 receptors. Altogether this data opens new approaches for further development of antagonists, agonists, and potentiators of orexin response based on the azulene scaffold. (C) 2018 Elsevier Masson SAS. All rights reserved.Peer reviewe

    Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents

    Get PDF
    Barbituric and thiobarbituric acid derivatives have become progressively attractive to medicinal chemists due to their wide range of biological activities. Herein, different series of 1,3,5-trisubstituted barbiturates and thiobarbiturates were prepared in moderate to excellent yields and their activity as xanthine oxidase inhibitors, antioxidants, antibacterial agents and as anti-proliferative compounds was evaluated in vitro. Interesting bioactive barbiturates were found namely, 1,3-dimethyl-5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6c) and 1,3-dimethyl-5-[1-[2-(4-nitrophenyl)hydrazinyl]ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6e), which showed concomitant xanthine oxidase inhibitory effect (IC50 values of 24.3 and 27.9 mu M, respectively), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC50 values of 18.8 and 23.8 mu M, respectively). In addition, 5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6d) also revealed DPPH radical scavenger effect, with an IC50 value of 20.4 mu M. Moreover, relevant cytotoxicity against MCF-7 cells (IC50 = 13.3 mu M) was observed with 5-[[(2-chloro-4-nitrophenyl)amino]methylene]-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (7d). Finally, different 5-hydrazinylethylidenepyrimidines revealed antibacterial activity against Acinetobacter baumannii (MIC values between 12.5 and 25.0 mu M) which paves the way for developing new treatments for infections caused by this Gram-negative coccobacillus bacterium, known to be an opportunistic pathogen in humans with high relevance in multidrug-resistant nosocomial infections. The most promising bioactive barbiturates were studied in silico with emphasis on compliance with the Lipinski's rule of five as well as several pharmacokinetics and toxicity parameters. (C) 2017 Elsevier Masson SAS. All rights reserved.Peer reviewe

    Synthesis of novel purpurealidin analogs and evaluation of their effect on the cancer-relevant potassium channel KV10.1

    Get PDF
    In the search for novel anticancer drugs, the potassium channel K(V)10.1 has emerged as an interesting cancer target. Here, we report a new group of K(V)10.1 inhibitors, namely the purpurealidin analogs. These alkaloids are produced by the Verongida sponges and are known for their wide variety of bioactivities. In this study, we describe the synthesis and characterization of 27 purpurealidin analogs. Structurally, bromine substituents at the central phenyl ring and a methoxy group at the distal phenyl ring seem to enhance the activity on K(V)10.1. The mechanism of action of the most potent analog 5 was investigated. A shift of the activation curve to more negative potentials and an apparent inactivation was observed. Since K(V)10.1 inhibitors can be interesting anticancer drug lead compounds, the effect of 5 was evaluated on cancerous and non-cancerous cell lines. Compound 5 showed to be cytotoxic and appeared to induce apoptosis in all the evaluated cell lines.Peer reviewe

    Preparation and characterization of dentin phosphophoryn-derived peptide-functionalized lignin nanoparticles for enhanced cellular uptake

    Get PDF
    The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP−cell interactions. Here, dentin phosphophoryn‐derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS‐functionalized LNPs (LNPs‐DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3‐MM2, MDA‐MB‐231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide‐functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs‐DSS show equal or even superior cellular internalization than the LNPs‐iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.Peer reviewe

    Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites

    Get PDF
    Subanesthetic rather than anesthetic doses are thought to bring the rapid antidepressant effects of the NMDAR (N-methyl-D-aspartate receptor) antagonist ketamine. Among molecular mechanisms, activation of BDNF receptor TrkB along with the inhibition of GSK3 beta (glycogen synthase kinase 3 beta) are considered as critical molecular level determinants for ketamine's antidepressant effects. Hydroxynorketamines (2R,6R)-HNK and (2S,6S) HNK), non-anesthetic metabolites of ketamine, have been proposed to govern the therapeutic effects of ketamine through a mechanism not involving NMDARs. However, we have shown that nitrous oxide, another NMDAR blocking anesthetic and a putative rapid-acting antidepressant, evokes TrkB-GSK3 beta signaling alterations during rebound slow EEG (electroencephalogram) oscillations. We investigated here the acute effects of ketamine, 6,6-d(2)-ketamine (a ketamine analogue resistant to metabolism) and cis-HNK that contains (2R,6R) and (2S,6S) enantiomers in 1:1 ratio, on TrkB-GSK3 beta signaling and concomitant electroencephalographic (EEG) alterations in the adult mouse cortex. Ketamine dose-dependently increased slow oscillations and phosphorylations of TrkB(Y816) and GSK3 beta(59) in crude brain homogenates (i.e. sedative/anesthetic doses ( > 50 mg/kg, i.p.) produced more prominent effects than a subanesthetic dose (10 mg/kg, i.p.)). Similar, albeit less obvious, effects were seen in crude synaptosomes. A sedative dose of 6,6-d(2)-ketamine (100 mg/kg, i.p.) recapitulated the effects of ketamine on TrkB and GSK3 beta phosphorylation while cis-HNK at a dose of 20 mg/kg produced negligible acute effects on TrkB-GSK3 beta signaling or slow oscillations. These findings suggest that the acute effects of ketamine on TrkB-GSK3 beta signaling are by no means restricted to subanesthetic (i.e. antidepressant) doses and that cis-HNK is not responsible for these effects.Peer reviewe

    Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C

    Get PDF
    Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKC delta C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain - targeted isophthalates and characterize their binding affinities to the PKC alpha isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKC alpha compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.Peer reviewe

    Chemical analysis using 3D printed glass microfluidics

    Get PDF
    Additive manufacturing (3D printing) is a disruptive technology that is changing production systems globally. In addition, microfluidic devices are increasingly being used for chemical analysis and continuous production of chemicals. Printing of materials such as polymers and metals is already a reality, but additive manufacturing of glass for microfluidic systems has received minor attention. We characterize microfluidic devices (channel cross-section dimensions down to a scale of 100 mm) that have been produced by additive manufacturing of molten soda-lime glass in tens of minutes and report their mass spectrometric and Raman spectroscopic analysis examples. The functionality of a microfluidic glass microreactor is shown with online mass spectrometric analysis of linezolid synthesis. Additionally, the performance of a direct infusion device is demonstrated by mass spectrometric analysis of drugs. Finally, the excellent optical quality of the glass structures is demonstrated with in-line Raman spectroscopic measurements. Our results promise a bright future for additively manufactured glass microdevices in diverse fields of science.Peer reviewe

    Dehydroabietylamine-Based Cellulose Nanofibril Films : A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects

    Get PDF
    The design of antimicrobial surfaces as integral parts of advanced biomaterials is nowadays a high research priority, as the accumulation of microorganisms on surfaces inflicts substantial costs on the health and industry sectors. At present, there is a growing interest in designing functional materials from polymers abundant in nature, such as cellulose, that combine sustainability with outstanding mechanical properties and economic production. There is also the need to find suitable replacements for antimicrobial silver-based agents due to environmental toxicity and spread of resistance to metal antimicrobials. Herein we report the unprecedented decoration of cellulose nanofibril (CNF) films with dehydroabietylamine 1 (CNF-CMC-1), to give an innovative contact-active surface active against Gram-positive and Gram-negative bacteria including the methicillin-resistant S. aureus MRSA14TK301, with low potential to spread resistance and good biocompatibility, all achieved with low surface coverage. CNF-CMC-1 was particularly effective against S. aureus ATCC12528, causing virtually complete reduction of the total cells from 10(5) colony forming units (CFU)/mL bacterial suspensions, after 24 h of contact. This gentle chemical modification of the surface of CNF fully retained the beneficial properties of the original film, including moisture buffering and strength, relevant in many potential applications. Our originally designed surface represents a new class of ecofriendly biomaterials that optimizes the performance of CNF by adding antimicrobial properties without the need for environmentally toxic silver.Peer reviewe
    corecore