228 research outputs found
\u27Vitamin D and cognition in older adults\u27: updated international recommendations.
BACKGROUND: Hypovitaminosis D, a condition that is highly prevalent in older adults aged 65 years and above, is associated with brain changes and dementia. Given the rapidly accumulating and complex contribution of the literature in the field of vitamin D and cognition, clear guidance is needed for researchers and clinicians.
METHODS: International experts met at an invitational summit on \u27Vitamin D and Cognition in Older Adults\u27. Based on previous reports and expert opinion, the task force focused on key questions relating to the role of vitamin D in Alzheimer\u27s disease and related disorders. Each question was discussed and voted using a Delphi-like approach.
RESULTS: The experts reached an agreement that hypovitaminosis D increases the risk of cognitive decline and dementia in older adults and may alter the clinical presentation as a consequence of related comorbidities; however, at present, vitamin D level should not be used as a diagnostic or prognostic biomarker of Alzheimer\u27s disease due to lack of specificity and insufficient evidence. This population should be screened for hypovitaminosis D because of its high prevalence and should receive supplementation, if necessary; but this advice was not specific to cognition. During the debate, the possibility of \u27critical periods\u27 during which vitamin D may have its greatest impact on the brain was addressed; whether hypovitaminosis D influences cognition actively through deleterious effects and/or passively by loss of neuroprotection was also considered.
CONCLUSIONS: The international task force agreed on five overarching principles related to vitamin D and cognition in older adults. Several areas of uncertainty remain, and it will be necessary to revise the proposed recommendations as new findings become available
A facility to Search for Hidden Particles (SHiP) at the CERN SPS
A new general purpose fixed target facility is proposed at the CERN SPS
accelerator which is aimed at exploring the domain of hidden particles and make
measurements with tau neutrinos. Hidden particles are predicted by a large
number of models beyond the Standard Model. The high intensity of the SPS
400~GeV beam allows probing a wide variety of models containing light
long-lived exotic particles with masses below (10)~GeV/c,
including very weakly interacting low-energy SUSY states. The experimental
programme of the proposed facility is capable of being extended in the future,
e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
The Effects of Vitamin D Receptor Silencing on the Expression of LVSCC-A1C and LVSCC-A1D and the Release of NGF in Cortical Neurons
Recent studies have suggested that vitamin D can act on cells in the nervous system. Associations between polymorphisms in the vitamin D receptor (VDR), age-dependent cognitive decline, and insufficient serum 25 hydroxyvitamin D(3) levels in Alzheimer's patients and elderly people with cognitive decline have been reported. We have previously shown that amyloid β (Aβ) treatment eliminates VDR protein in cortical neurons. These results suggest a potential role for vitamin D and vitamin D-mediated mechanisms in Alzheimer's disease (AD) and neurodegeneration. Vitamin D has been shown to down-regulate the L-type voltage-sensitive calcium channels, LVSCC-A1C and LVSCC-A1D, and up-regulate nerve growth factor (NGF). However, expression of these proteins when VDR is repressed is unknown. The aim of this study is to investigate LVSCC-A1C, LVSCC-A1D expression levels and NGF release in VDR-silenced primary cortical neurons prepared from Sprague-Dawley rat embryos.qRT-PCR and western blots were performed to determine VDR, LVSCC-A1C and -A1D expression levels. NGF and cytotoxicity levels were determined by ELISA. Apoptosis was determined by TUNEL. Our findings illustrate that LVSCC-A1C mRNA and protein levels increased rapidly in cortical neurons when VDR is down-regulated, whereas, LVSCC-A1D mRNA and protein levels did not change and NGF release decreased in response to VDR down-regulation. Although vitamin D regulates LVSCC-A1C through VDR, it may not regulate LVSCC-A1D through VDR.Our results indicate that suppression of VDR disrupts LVSCC-A1C and NGF production. In addition, when VDR is suppressed, neurons could be vulnerable to aging and neurodegeneration, and when combined with Aβ toxicity, it is possible to explain some of the events that occur during neurodegeneration
Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.
Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg block. In addition, we provide new views on Mg and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B unusually allowed Mg permeation, whereas nearby N615I reduced Ca permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations
High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well
Pervasive and opposing effects of Unpredictable Chronic Mild Stress (UCMS) on hippocampal gene expression in BALB/cJ and C57BL/6J mouse strains
Background: BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. Results: The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. Conclusions: The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder
Decreased Reward Sensitivity in Rats from the Fischer344 Strain Compared to Wistar Rats Is Paralleled by Differences in Endocannabinoid Signaling
BACKGROUND: The aim of the present study was to examine if differences in the endocannabinoid (ECB) system might be linked to strain specific variations in reward-related behavior in Fischer344 (Fischer) and Wistar rats. METHODOLOGY/PRINCIPAL FINDINGS: Two rat strains, the Fischer and the Wistar strain, were tested for different aspects of reward sensitivity for a palatable food reward (sweetened condensed milk, SCM) in a limited-access intake test, a progressive ratio (PR) schedule and the pleasure-attenuated startle (PAS) paradigm. Additionally, basic differences in the ECB system and cannabinoid pharmacology were examined in both rat strains. Fischer rats were found to express lower reward sensitivity towards SCM compared to Wistar rats. These differences were observed for consummatory, motivational and hedonic aspects of the palatable food reward. Western blot analysis for the CB1 receptor and the ECB degrading enzyme fatty acid amide hydrolase (FAAH) revealed a lower expression of both proteins in the hippocampus (HPC) of Fischer rats compared to the Wistar strain. Furthermore, increased cannabinoid-stimulated extracellular-regulated kinase (ERK) phosphorylation was detected in Wistar rats compared to the Fischer strain, indicating alterations in ECB signaling. These findings were further supported by the pharmacological results, where Fischer rats were found to be less sensitive towards the effects of the CB1 receptor antagonist/inverse agonist SR141716 and the cannabinoid agonist WIN 55,212-2. CONCLUSIONS/SIGNIFICANCE: Our present findings indicate differences in the expression of the CB1 receptor and FAAH, as well as the activation of ECB signaling pathways between Fischer and Wistar rats. These basic differences in the ECB system might contribute to the pronounced differences observed in reward sensitivity between both rat strains
- …