13 research outputs found

    Magnetic Levitation Based Applications in Bioscience

    Get PDF
    Contactless manipulation of small objects, such as micro−/nanoparticles, biological entities, and even cells is required in varied applications in biosciences. Magnetic levitation (MagLev) is a new-generation methodology to achieve contactless magnetic manipulation of objects. Lately, magnetic levitation methodology has been utilized in several applications in bioscience, such as biosensors, diagnostics and tissue engineering. Magnetic levitation enables separation or positioning of objects in three-dimensional (3D) space based on their density features. Therefore, density-based separation assays utilizing magnetic levitation for biosensing or diagnostic purposes are developed recently. Specific particles or cells, which are markers of any disease, could be detected by sorting them based on density differences through magnetic levitation. On the other hand, tissue engineering studies and production of self-assembled 3D cell culture structures are carried out by magnetic levitation, where cells are magnetically positioned while allowing cell-cell interaction resulting in 3D cell culture formation. Lately, magnetic levitation methodologies received more interest in the field of bioscience due to advantages about the efficiency and cost. This contribution broadly summarizes recent efforts in magnetic levitation techniques that are mainly applied in diagnostics and tissue engineering

    Biomimetic membrane platform : fabrication, characterization and applications

    No full text
    A facile method for assembly of biomimetic membranes serving as a platform for expression and insertion of membrane proteins is described. The membrane architecture was constructed in three steps: (i) assembly/printing of α-laminin peptide (P19) spacer on gold to separate solid support from the membrane architecture; (ii) covalent coupling of different lipid anchors to the P19 layer to serve as stabilizers of the inner leaflet during bilayer formation; (iii) lipid vesicle spreading to form a complete bilayer. Two different lipid membrane systems were examined and two different P19 architectures prepared by either self-assembly or μ-contact printing were tested and characterized using contact angle (CA) goniometry, surface plasmon resonance (SPR) spectroscopy and imaging surface plasmon resonance (iSPR). It is shown that surface coverage of cushion layer is significantly improved by μ-contact printing thereby facilitating bilayer formation as compared to self-assembly. To validate applicability of proposed methodology, incorporation of Cytochrome bo3 ubiquinol oxidase (Cyt-bo3) into biomimetic membrane was performed by in vitro expression technique which was further monitored by surface plasmon enhanced fluorescence spectroscopy (SPFS). The results showed that solid supported planar membranes, tethered by α-laminin peptide cushion layer, provide an attractive environment for membrane protein insertion and characterization

    Towards artificial tissue models: past, present, and future of 3D bioprinting

    No full text
    Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research

    Magnetic levitation of single cells

    No full text
    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 x 10(-4) g.mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine

    Magnetic levitation of single cells

    No full text
    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(−4) g⋅mL(−1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine

    COVID-19 associated multisystemic inflammatory syndrome in 614 children with and without overlap with Kawasaki disease-Turk MIS-C study group.

    No full text
    Multisystemic inflammatory syndrome (MIS-C) diagnosis remains difficult because the clinical features overlap with Kawasaki disease (KD). The study aims to highlight the clinical and laboratory features and outcomes of patients with MISC whose clinical manifestations overlap with or without KD. This study is a retrospective analysis of a case series designed for patients aged 1 month to 18 years in 28 hospitals between November 1, 2020, and June 9, 2021. Patient demographics, complaints, laboratory results, echocardiographic results, system involvement, and outcomes were recorded. A total of 614 patients were enrolled; the median age was 7.4 years (interquartile range (IQR) 3.9-12 years). A total of 277 (45.1%) patients with MIS-C had manifestations that overlapped with KD, including 92 (33.3%) patients with complete KD and 185 (66.7%) with incomplete KD. Lymphocyte and platelet counts were significantly lower in patients with MISC, overlapped with KD (lymphocyte count 1080 vs. 1280 cells x mu L, p = 0.028; platelet count 166 vs. 216 cells x 10(3)/mu L, p 12 years reduced the risk of overlap with KD by 66% (p < 0.001, 95% CI 0.217-0.550), lethargy increased the risk of overlap with KD by 2.6-fold (p = 0.011, 95% CI 1.244-5.439), and each unit more albumin (g/dl) reduced the risk of overlap with KD by 60% (p < 0.001, 95% CI 0.298-0.559)
    corecore