253 research outputs found

    Supernova burst and relic neutrino sensitivity studies in the Hyper-Kamiokande Korean sites

    Get PDF
    Hyper-Kamiokande is a next-generation water Cherencov detector for neutrino physics. Its large volume (260 kton × 2) allows Supernova burst (SN) neutrino and Supernova Relic Neutrino (SRN) search much more promising than current Super-Kamiokande detector (50 kton). With an alternative plan of locating one of the two identical detectors to Korea, better physics sensitivities are expected because of less muon flux and its spallation isotopes due to more overburden in Korean candidate sites than Japanese Hyper-Kamiokande site (Tochibora). According to our study using simple MC 102 SRN events (5.2 sigma) in a Korean site and 71 SRN events (4.2 sigma) in the Japanese site are expected for 10 years of operation for one detector. Sensitivity studies using a full MC will be performed in the near future

    Determinants of muscle carnosine content

    Get PDF
    The main determinant of muscle carnosine (M-Carn) content is undoubtedly species, with, for example, aerobically trained female vegetarian athletes [with circa 13 mmol/kg dry muscle (dm)] having just 1/10th of that found in trained thoroughbred horses. Muscle fibre type is another key determinant, as type II fibres have a higher M-Carn or muscle histidine containing dipeptide (M-HCD) content than type I fibres. In vegetarians, M-Carn is limited by hepatic synthesis of β-alanine, whereas in omnivores this is augmented by the hydrolysis of dietary supplied HCD’s resulting in muscle levels two or more times higher. β-alanine supplementation will increase M-Carn. The same increase in M-Carn occurs with administration of an equal molar quantity of carnosine as an alternative source of β-alanine. Following the cessation of supplementation, M-Carn returns to pre-supplementation levels, with an estimated t1/2 of 5–9 weeks. Higher than normal M-Carn contents have been noted in some chronically weight-trained subjects, but it is unclear if this is due to the training per se, or secondary to changes in muscle fibre composition, an increase in β-alanine intake or even anabolic steroid use. There is no measureable loss of M-Carn with acute exercise, although exercise-induced muscle damage may result in raised plasma concentrations in equines. Animal studies indicate effects of gender and age, but human studies lack sufficient control of the effects of diet and changes in muscle fibre composition

    Pre-radiotherapy plasma carotenoids and markers of oxidative stress are associated with survival in head and neck squamous cell carcinoma patients: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare plasma levels of antioxidants and oxidative stress biomarkers in head and neck squamous cell carcinoma (HNSCC) patients with healthy controls. Furthermore, the effect of radiotherapy on these biomarkers and their association with survival in HNSCC patients were investigated.</p> <p>Methods</p> <p>Seventy-eight HNSCC patients and 100 healthy controls were included in this study. Follow-up samples at the end of radiotherapy were obtained in 60 patients. Fifteen antioxidant biomarkers (6 carotenoids, 4 tocopherols, ascorbic acid, total antioxidant capacity, glutathione redox potential, total glutathione and total cysteine) and four oxidative stress biomarkers (total hydroperoxides, γ-glutamyl transpeptidase, 8-isoprostagladin F<sub>2α </sub>and ratio of oxidized/total ascorbic acid) were measured in plasma samples. Analysis of Covariance was used to compare biomarkers between patients and healthy controls. Kaplan-Meier plots and Cox' proportional hazards models were used to study survival among patients.</p> <p>Results</p> <p>Dietary antioxidants (carotenoids, tocopherols and ascorbic acid), ferric reducing antioxidant power (FRAP) and modified FRAP were lower in HNSCC patients compared to controls and dietary antioxidants decreased during radiotherapy. Total hydroperoxides (d-ROMs), a marker for oxidative stress, were higher in HNSCC patients compared to controls and increased during radiotherapy. Among the biomarkers analyzed, high levels of plasma carotenoids before radiotherapy are associated with a prolonged progression-free survival (hazard rate ratio: 0.42, 95% CI: 0.20-0.91, p = 0.03). Additionally, high relative increase in plasma levels of d-ROMs (hazard rate ratio: 0.31, 95% CI: 0.13-0.76, p = 0.01) and high relative decrease in FRAP (hazard rate ratio: 0.42, 95% CI: 0.17-0.998, p = 0.05) during radiotherapy are also positively associated with survival.</p> <p>Conclusions</p> <p>Biomarkers of antioxidants and oxidative stress are unfavourable in HNSCC patients compared to healthy controls, and radiotherapy affects many of these biomarkers. Increasing levels of antioxidant biomarkers before radiotherapy and increasing oxidative stress during radiotherapy may improve survival indicating that different factors/mechanisms may be important for survival before and during radiotherapy in HNSCC patients. Thus, the therapeutic potential of optimizing antioxidant status and oxidative stress should be explored further in these patients.</p
    corecore