10 research outputs found
Deacetylase activity is required for STAT5-Dependent GM-CSF functional activity in macrophages and differentiation to dendritic cells.
After interaction with its receptor, GM-CSF induces phosphorylation of the -chain in two distinct domains in macrophages. One induces activation of mitogen-activated protein kinases and the PI3K/Akt pathway, and the other induces JAK2-STAT5. In this study we describe how trichostatin A (TSA), which inhibits deacetylase activity, blocks JAK2-STAT5-dependent gene expression but not the expression of genes that depend on the signal transduction induced by the other domain of the receptor. TSA treatment inhibited the GM-CSF-dependent proliferation of macrophages by interfering with c-myc and cyclin D1 expression. However, M-CSF-dependent proliferation, which requires ERK1/2, was unaffected. Protection from apoptosis, which involves Akt phosphorylation and p21waf-1 expression, was not modified by TSA. GM-CSF-dependent expression of MHC class II molecules was inhibited because CIITA was not induced. The generation of dendritic cells was also impaired by TSA treatment because of the inhibition of IRF4, IRF2, and RelB expression. TSA mediates its effects by preventing the recruitment of RNA polymerase II to the promoter of STAT5 target genes and by inhibiting their expression. However, this drug did not affect STAT5A or STAT5B phosphorylation or DNA binding. These results in GM-CSF-treated macrophages reveal a relationship between histone deacetylase complexes and STAT5 in the regulation of gene expression
Arginine transport is impaired in C57Bl/6 mouse macrophages as a result of a deletion in the promoter of slc7a2 (CAT2) and Leishmania infection is reduced
Host genetic factors play a crucial role in immune response. To determine whether the differences betweenC57Bl/6 and BALB-C mice are due only to the production of cytokines by T-helper 1 cells or T-helper 2 cells,we obtained bone marrowâderived macrophages from both strains and incubated them with these cytokines.Although the induction of Nos2 and Arg1 was similar in the 2 strains, infectivity to Leishmania major differed,as did macrophage uptake of arginine, which was higher in BALB-C macrophages. The levels of interferon Îłâand interleukin 4âdependent induction of the cationic amino acid transporter SLC7A2 (also known as âcationicamino acid transporter 2,â or âCAT2â) were decreased in macrophages from C57Bl/6 mice. This reductionwas a result of a deletion in the promoter of one of the 4 AGGG repeats. These results demonstrate that theavailability of arginine controls critical aspects of macrophage activation and reveal a factor for susceptibility to Leishmania infection
Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation.
In murine macrophages, as a result of arginine catabolism during activation, citruline isproduced under the effect of IFN-c and LPS, and ornithine and polyamines by IL-4 and IL-10. For proliferation, arginine is required from the extracellular medium and is used for protein synthesis. During activation, most arginine (>95% in 6 h) was metabolized, while under proliferation only half was incorporated into proteins. Under basal conditions, this amino acid was preferentially transported by y+L activity. During activation, arginine transport increased drastically (4â5-fold) through y+ cationic amino acid transporter (CAT) activity. By contrast, M-CSF induced only a modest increase in uptake (0.5-fold). The increase in arginine transport during activation, but not proliferation, was mediated by the SLC7A2/Cat2 gene. SLC7A1/Cat1 is constitutively expressed, and is not modified by proliferating or activating agents.M-CSF-dependent proliferation was not affected in the macrophages of SLC7A2 knockout mice; however, these cells showed a drastic reduction in the production of citruline or ornithine and polyamines during activation. The data show that a large increase in a specific transport system (CAT2) is necessary for activation-induced arginine metabolism, while arginine is in excess for the requirements of proliferation and a modest increase in transport occurs
Sprouty1 is a broad mediator of cellular senescence
Genes of the Sprouty family (Spry1-4) restrain signaling by certain receptor tyrosine kinases. Consequently, these genes participate in several developmental processes and function as tumor suppressors in adult life. Despite these important roles, the biology of this family of genes still remains obscure. Here we show that Sprouty proteins are general mediators of cellular senescence. Induction of cellular senescence by several triggers in vitro correlates with upregulation of Sprouty protein levels. More importantly, overexpression of Sprouty genes is sufficient to cause premature cellular senescence, via a conserved N-terminal tyrosine (Tyrosine 53 of Sprouty1). Accordingly, fibroblasts from knockin animals lacking that tyrosine escape replicative senescence. In vivo, heterozygous knockin mice display delayed induction of cellular senescence during cutaneous wound healing and upon chemotherapy-induced cellular senescence. Unlike other functions of this family of genes, induction of cellular senescence appears to be independent of activation of the ERK1/2 pathway. Instead, we show that Sprouty proteins induce cellular senescence upstream of the p38 pathway in these in vitro and in vivo paradigms
Multiple endocrine defects in adult-onset Sprouty1/2/4 triple knockout mice
Genes of the Sprouty family (Spry1-4) are feedback inhibitors of receptor tyrosine kinases, especially of Ret and the FGF receptors. As such, they play distinct and overlapping roles in embryo morphogenesis and are considered to be tumor suppressors in adult life. Genetic experiments in mice have defined in great detail the role of these genes during embryonic development, however their function in adult mice is less clearly established. Here we generate adult-onset, whole body Spry1/2/4 triple knockout mice. Tumor incidence in triple mutant mice is comparable to that of wild type littermates of up to one year of age, indicating that Sprouty loss per se is not sufficient to initiate tumorigenesis. On the other hand, triple knockout mice do not gain weight as they age, show less visceral fat, and have lower plasma glucose levels than wild type littermates, despite showing similar food intake and slightly reduced motor function. They also show alopecia, eyelid inflammation, and mild hyperthyroidism. Finally, triple knockout mice present phosphaturia and hypophosphatemia, suggesting exacerbated signaling downstream of FGF23. In conclusion, triple knockout mice develop a series of endocrine abnormalities but do not show increased tumor incidence
Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages
Arginine is processed by macrophages in response to the cytokines to which these cells are exposed. Th1-type cytokines induce NO synthase 2, which metabolizes arginine into nitrites, while the Th2-type cytokines produce arginase, which converts arginine into polyamines and proline. Activation of bone marrow-derived macrophages by these two types of cytokines increases L-arginine transport only through the y system. Analysis of the expression of the genes involved in this system showed that Slc7A1, encoding cationic amino acid transporters (CAT)1, is constitutively expressed and is not modified by activating agents, while Slc7A2, encoding CAT2, is induced during both classical and alternative activation. Macrophages from Slc7A2 knockout mice showed a decrease in L-arginine transport in response to the two kinds of cytokines. However, while NO synthase 2 and arginase expression were unmodified in these cells, the catabolism of arginine was impaired by both pathways, producing smaller amounts of nitrites and also of polyamines and proline. In addition, the induction of Slc7A2 expression was independent of the arginine available and of the enzymes that metabolize it. In conclusion, the increased arginine transport mediated by activators is strongly regulated by CAT2 expression, which could limit the function of macrophages
Oxidative stressâinduced FAK activation contributes to uterine serous carcinoma aggressiveness
Uterine serous carcinoma (USC) is an aggressive form of endometrial cancer (EC), characterized by its high propensity for metastases. In fact, while endometrioid endometrial carcinoma (EEC), which accounts for 85% of EC, presents a good prognosis, USC is the most frequently fatal. Herein, we used for the first time a peptideâbased tyrosineâkinaseâactivity profiling approach to quantify the changes in tyrosine kinase activation between USC and EEC. Among the tyrosine kinases highly activated in USC, we identified focal adhesion kinase (FAK). We conducted mechanistic studies using cellular models. In a USC cell line, targeting FAK either by inhibitors PFâ573228 and defactinib (VSâ6063) or by gene silencing limits 3D cell growth and reduces cell migration. Moreover, results from our studies suggest that oxidative stress is increased in USC tumors compared to EEC ones. Reactive oxygen species (ROS) induce tyrosine phosphorylation of FAK and a concomitant tyrosine phosphorylation of paxillin, a mediator of FAK signal transduction. Mechanistically, by tracking hundreds of individual cells per condition, we show that ROS increased cell distance and migration velocity, highlighting the role of ROSâFAKâPAX signaling in cell migration. Both defactinib and ROS scavenger Nâacetylcysteine (NAC) revert this effect, pointing toward ROS as potential culprits for the increase in USC cell motility. A proof of concept of the role of FAK in controlling cell growth was obtained in inâvivo experiments using cancerâtissueâoriginated spheroids (CTOS) and a patientâderived orthotopic xenograft model (orthoxenograft/PDOX). Defactinib reduces cell proliferation and protein oxidation, supporting a proâtumoral antioxidant role of FAK, whereas antioxidant NAC reverts FAK inhibitor effects. Overall, our data points to ROSâmediated FAK activation in USC as being responsible for the poor prognosis of this tumor type and emphasize the potential of FAK inhibition for USC treatment