85 research outputs found

    Spinal Cord Injury Markedly Altered Protein Expression Patterns in the Affected Rat Urinary Bladder during Healing Stages

    Get PDF
    The influence of spinal cord injury (SCI) on protein expression in the rat urinary bladder was assessed by proteomic analysis at different time intervals post-injury. After contusion SCI between T9 and T10, bladder tissues were processed by 2-DE and MALDI-TOF/MS at 6 hr to 28 days after SCI to identify proteins involved in the healing process of SCI-induced neurogenic bladder. Approximately 1,000 spots from the bladder of SCI and sham groups were visualized and identified. At one day after SCI, the expression levels of three protein were increased, and seven spots were down-regulated, including heat shock protein 27 (Hsp27) and heat shock protein 20 (Hsp20). Fifteen spots such as S100-A11 were differentially expressed seven days post-injury, and seven proteins including transgelin had altered expression patterns 28 days after injury. Of the proteins with altered expression levels, transgelin, S100-A11, Hsp27 and Hsp20 were continuously and variably expressed throughout the entire post-SCI recovery of the bladder. The identified proteins at each time point belong to eight functional categories. The altered expression patterns identified by 2-DE of transgelin and S100-A11 were verified by Western blot. Transgelin and protein S100-A11 may be candidates for protein biomarkers in the bladder healing process after SCI

    Discrimination of Dendropanax morbifera via HPLC fingerprinting and SNP analysis and its impact on obesity by modulating adipogenesis- and thermogenesis-related genes

    Get PDF
    Dendropanax morbifera (DM), a medicinal plant, is rich in polyphenols and commonly used to treat cancer, inflammation, and thrombosis. However, to date, no study has been conducted on DM regarding the enormous drift of secondary metabolites of plants in different regions of the Republic of Korea and their effects on antiobesity, to explore compounds that play an important role in two major obesity-related pathways. Here, we present an in-depth study on DM samples collected from three regions of the Republic of Korea [Jeju Island (DMJ), Bogildo (DMB), and Jangheung (DMJG)]. We used high-performance liquid chromatography (HPLC) and multivariate component analyses to analyze polyphenol contents (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin), followed by discrimination of the samples in DMJG using single nucleotide polymorphism and chemometric analysis. In silico and in vitro evaluation of major compounds found in the plant extract on two major anti-obesity pathways (adipogenesis and thermogenesis) was carried out. Furthermore, two extraction methods (Soxhlet and ultrasound-assisted extraction) were used to understand which method is better and why. Upon quantifying plant samples in three regions with the polyphenols, DMJG had the highest content of polyphenols. The internal transcribed region (ITS) revealed a specific gel-based band for the authentication of DMJG. PCA and PLS-DA revealed the polyphenol’s discriminative power of the region DMJG. The anti-obesity effects of plant extracts from the three regions were related to their polyphenol contents, with DMJG showing the highest effect followed by DMJ and DMB. Ultrasound-assisted extraction yielded a high number of polyphenols compared to that of the Soxhlet method, which was supported by scanning electron microscopy. The present work encourages studies on plants rich in secondary metabolites to efficiently use them for dietary and therapeutic purposes

    Comparative Study of the Effects of Different Growth Hormone Doses on Growth and Spatial Performance of Hypophysectomized Rats

    Get PDF
    This study was designed to examine the effects of recombinant human growth hormone replacement on somatic growth and cognitive function in hypophysectomized (HYPOX) female Sprague-Dawley rats. Rats (5 per group) were randomized by weight to 3 experimental groups: group 1, administered 200 µg/kg of GH once daily for 9 days; group 2, administered 200 µg/kg of GH twice daily; and group 3, administered saline daily. Somatic growth was evaluated by measurement of body weight daily and of the width of the proximal tibial growth plate of the HYPOX rats. Cognitive function was evaluated using the Morris water maze (MWM) test. The results indicated that GH replacement therapy in HYPOX rats promoted an increase in the body weight and the width of the tibial growth plate in a dose-dependent manner. On the third day of the MWM test, the escape latency in the GH-treated groups 1 and 2 was significantly shorter than that in the control rats (P<0.001 and P=0.032, respectively), suggesting that rhGH improved spatial memory acquisition in the MWM test. Therefore it is concluded that rhGH replacement therapy in HYPOX rats stimulates an increase in somatic growth in a dose-dependent manner and also has beneficial effects on cognitive functions

    Experimental and Finite Element-Based Investigation on Lateral Behaviors of a Novel Hybrid Monopile

    Get PDF
    A monopile is the most conventional structure foundation for offshore wind turbines (OWTs) in the world. However, the Korean offshore wind industry has mostly been using the jacket type of foundation. The main reason for the current situation in Korea is that most of the marine soil consists of weak layers of sand and clay. Thus, the monopile foundation depth has to be deep enough to satisfy the intended serviceability design requirement of the monopile and the rotation limit at the seabed; a conventional monopile design concept alone might be insufficient in Korean offshore conditions, or otherwise could be very expensive, e.g., resulting in a rock socket installation at the tip of the monopile. The main objective of this paper is to introduce a novel hybrid monopile that is composed of a monopile and a supplemental support with three buckets, followed by assessing the lateral resistance of the hybrid system through physical experiments and finite element (FE) simulations. Namely, 1/64.5 small-scaled monopile and hybrid physical models with a monopile diameter of 7 m for a 5.5 MW OWT were loaded monotonically. The results show that the hybrid monopile improves the lateral bearing capacity regarding the initial lateral stiffness and ultimate load. The FE analyses of the corresponding physical models were also implemented to support the results from the physical model test. The numerical results, such as the structural member forces and soil deformation, were analyzed in detail. Additionally, a case study using FE analysis was conducted for the 5.5 MW OWT hybrid monopile support installed in a representative Korean weak soil area. The results show that the hybrid monopile foundation has a larger lateral resistance and stiffness than the monopile

    Proteomics Analysis of Antitumor Activity of Agrimonia pilosa Ledeb. in Human Oral Squamous Cell Carcinoma Cells

    No full text
    Oral cancer is a malignant neoplasm of oral cavity. It accounts for approximately 5% of all malignant tumors. Approximately 97% of all oral cancers are squamous cell carcinomas, followed by adenocarcinomas, and rarely malignant melanomas. It occurs particularly in males (twice as common in males than in females) of middle age (above 40 years). Agrimonia pilosa Ledeb. has traditionally been known for its effective antitumor activity and is currently used in China for cancer therapy. A. pilosa Ledeb. has been traditionally used for the treatment of abdominal pain, sore throat, headache, blood discharge, parasitic infections, and eczema in Korea and other Asian countries. Most studies on A. pilosa Ledeb. are related to the leaves and a few investigated the roots of the plant. However, detailed mechanisms of antitumor activity of A. pilosa Ledeb. have not been fully elucidated. Furthermore, to date, there have been no reports on the antitumor effect of A. pilosa Ledeb. in oral squamous cells. In this study, we used proteomic technology to observe changes in proteins related to anticancer activity of A. pilosa Ledeb. and identified target proteins among altered proteins to reveal the underlying mechanism of action

    Immortalization of primary marmoset skin fibroblasts by CRISPR-Cas9-mediated gene targeting

    No full text
    Immortalized cell lines can be used for diverse in vitro experiments, providing invaluable data before conducting in vivo studies Callithrix jacchus, the common marmoset, is a non-human primate model utilized for studying various human diseases. However, only a few immortalized marmoset cell lines are currently available. In the present study, we reveal that CRISPR-Cas9-mediated targeting of the p53 gene or CDKN2A locus is an effective means for immortalizing primary marmoset skin fibroblasts. In addition to frameshift mutations that result in premature stop codons, in-frame mutations potentially destroying the DNA-binding motif of p53 are frequently detected in immortalized cells. Like Cdkn2a-deficient mouse cells, CDKN2A-deficient marmoset cells express wild-type p53 proteins normally respond to genotoxic stresses, including adriamycin and etoposide. Taken together, these findings indicate that Cas9- mediated gene targeting of the p53 gene or CDKN2A locus is an effective tool for establishing immortalized marmoset cell lines with defined genetic alterations.</p

    Transformation from Cu2-xS Nanodisks to Cu2-xS@CuInS2 Heteronanodisks via Cation Exchange

    No full text
    Cationic-exchange methods allow for the fabrication of metastable phases or shapes, which are impossible to obtain with conventional synthetic colloidal methods. Here, we present the systematic fabrication of heteronanostructured (HNS) Cu2-xS@CuInS2 nanodisks via a cationic-exchange reaction between Cu and In atoms. The indium-trioctylphosphine complex favorably attacks the lateral (16 0 0) plane of the roxbyite Cu2-xS hexagon. We explain the phenomena by estimating the formation energy of vacancies and the heat of reaction required to exchange three Cu atoms with an In atom via density functional theory calculations. In an experiment, a decrease in the amount of trioctylphosphine surfactant slows the reaction rate and allows for the formation of a lateral heterojunction structure of nanoplatelets. We analyze the exact structures of these materials using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. Moreover, we demonstrate that our heteronanodisk can be an intermediate for different HNS materials; for example, adding gold precursors to a Cu2-xS@CuInS2 nanodisk results in a AuS@CuInS2 nanodisk via an additional cationic reaction between Cu ions and Au ions.clos

    The Arabidopsis U12-Type Spliceosomal Protein U11/U12-31K Is Involved in U12 Intron Splicing via RNA Chaperone Activity and Affects Plant Development[C][W]

    No full text
    Correct splicing of U12 introns is essential for constitutive and regulated gene expression in eukaryotes. This study provides evidence that U11/U12-31K, a U12-type spliceosomal protein in Arabidopsis thaliana, is an RNA chapereone that is indispensible for proper U12 intron splicing and for normal growth and development of plants
    corecore