1,074 research outputs found

    Numerical investigation on the performance of coalescence and break-up kernels in subcooled boiling flows in vertical channels

    Get PDF
    In order to accurately predict the thermal hydraulic of two-phase gas-liquid flows with heat and mass transfer, special numerical considerations are required to capture the underlying physics: characteristics of the heat transfer and bubble dynamics taking place near the heated wall and the evolution of the bubble size distribution caused by the coalescence, break-up, and condensation processes in the bulk subcooled liquid. The evolution of the bubble size distribution is largely driven by the bubble coalescence and break-up mechanisms. In this paper, a numerical assessment on the performance of six different bubble coalescence and break-up kernels is carried out to investigate the bubble size distribution and its impact on local hydrodynamics. The resultant bubble size distributions are compared to achieve a better insight of the prediction mechanisms. Also, the void fraction, bubble Sauter mean diameter, and interfacial area concentration profiles are compared against the experimental data to ensure the validity of the models applied

    Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies

    Get PDF
    The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21K was observed in the most Fe deficient film (x=0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.Comment: 15 pages, 4 figure

    Correlated enhancement of Hc2 and Jc in carbon nanotube-doped MgB2

    Full text link
    The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wall carbon nanotubes (DWCNT) as a source of carbon in polycrystalline samples. The optimum nominal DWCNT content for increasing the critical current density, Jc is in the range 2.5-10%at depending on field and temperature. Record values of the upper critical field, Hc2(4K) = 41.9 T (with extrapolated Hc2(0) ~ 44.4 T) are reached in a bulk sample with 10%at DWCNT content. The measured Hc2 vs T in all samples are successfully described using a theoretical model for a two-gap superconductor in the dirty limit first proposed by Gurevich et al.Comment: 12 pages, 3 figure

    Role of front-line bevacizumab in advanced ovarian cancer: the OSCAR study

    Get PDF
    Objective Two randomized phase III trials demonstrated the efficacy and safety of combining bevacizumab with front-line carboplatin/paclitaxel for advanced ovarian cancer. The OSCAR (NCT01863693) study assessed the impact of front-line bevacizumab-containing therapy on safety and oncologic outcomes in patients with advanced ovarian cancer in the UK. Methods Between May 2013 and April 2015, patients with high-risk stage IIIB–IV advanced ovarian cancer received bevacizumab (7.5 or 15 mg/kg every 3 weeks, typically for ≤12 months, per UK clinical practice) combined with front-line chemotherapy, with bevacizumab continued as maintenance therapy. Co-primary endpoints were progression-free survival and safety (NCI-CTCAE v4.0). Patients were evaluated per standard practice/physician’s discretion. Results A total of 299 patients received bevacizumab-containing therapy. The median age was 64 years (range 31–83); 80 patients (27%) were aged ≥70 years. Surgical interventions were primary debulking in 21%, interval debulking in 36%, and none in 43%. Most patients (93%) received bevacizumab 7.5 mg/kg with carboplatin/paclitaxel. Median duration of bevacizumab was 10.5 months(range <0.1–41.4); bevacizumab and chemotherapy were given in combination for a median of three cycles (range 1–10). Median progression-free survival was 15.4 (95% CI 14.5 to 16.9) months. Subgroup analyses according to prior surgery showed median progression-free survival of 20.8, 16.1, and 13.6 months in patients with primary debulking, interval debulking, and no surgery, respectively. Median progression-free survival was 16.1 vs 14.8 months in patients aged <70 versus ≥70 years, respectively. The 1-year overall survival rate was 94%. Grade 3/4 adverse events occurred in 54% of patients, the most common being hypertension (16%) and neutropenia (5%). Thirty-five patients (12%) discontinued bevacizumab for toxicity (most often for proteinuria (2%)). Conclusions Median progression-free survival in this study was similar to that in the high-risk subgroup of the ICON7 phase III trial. Median progression-free survival was shortest in patients who did not undergo surgery

    Truthful Online Double Auctions for Mobile Crowdsourcing:An On-demand Service Strategy

    Get PDF
    Double auctions play a pivotal role in stimulating active participation of a large number of users comprising both task requesters and workers in mobile crowdsourcing. However, most existing studies have concentrated on designing offline two-sided auction mechanisms and supporting single-type tasks and fixed auction service models. Such works ignore the need of dynamic services and are unsuitable for large-scale crowdsourcing markets with extremely diverse demands (i.e., types and urgency degrees of tasks required by different requesters) and supplies (i.e., task skills and online durations of different workers). In this paper, we consider a practical crowdsourcing application with an on-demand service strategy. Especially, we innovatively design three online service models, namely online single-bid single-task (OSS), online single-bid multiple-task (OSM) and online multiple-bid multiple-task (OMM) models to accommodate diversified tasks and bidding demands for different users. Furthermore, to effectively allocate tasks and facilitate bidding, we propose a truthful online double auction mechanism for each service model based on the McAfee double auction. By doing so, each user can flexibly select auction service models and corresponding auction mechanisms according to their current interested tasks and online duration. To illustrate this, we present a three-demand example to explain the effectiveness of our on-demand service strategy in realistic crowdsourcing applications. Moreover, we theoretically prove that our mechanisms satisfy truthfulness, individual rationality, budget balance and consumer sovereignty. Through extensive simulations, we show that our mechanisms can accommodate the various demands of different users and improve social utility including platform utility and average user utility. IEE

    Graphene doping to enhance flux pinning and supercurrent carrying ability in magnesium diboride superconductor

    Get PDF
    It has been shown that graphene doping is sufficient to lead to an improvement in the critical current density - field performance (Jc(B)), with little change in the transition temperature in MgB2. At 3.7 at% graphene doping of MgB2 an optimal enhancement in Jc(B) was reached by a factor of 30 at 5 K and 10 T, compared to the un-doped sample. The results suggested that effective carbon substitutions by grapheme, 2D nature of grapheme and the strain effect induced by difference thermal coefficient between single grapheme sheet and MgB2 superconductor may play an important role in flux pinning enhancement
    corecore