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Abstract   

The effect of graphene doping on electromagnetic properties of MgB2 has been examined in 

comparison with undoped MgB2. It was found that graphene doping is more efficient than other 

forms of carbon doping for the improvement in the critical current density - field performance (Jc(B)), 

with little change in the transition temperature in MgB2. An optimal enhancement in Jc(B) was 

achieved for 3.7 at% graphene doped MgB2 by a factor of 30 at 5 K and 10 T, compared to the un-

doped MgB2.  It is found that spatial fluctuation in Tc is responsible for the flux pinning mechanism 

in grephene doped MgB2.  

 

(Some figures in this article are in colour only in the electronic version) 
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Substitutional chemistry can modify, in a controlled way, the electronic structures of 

superconductors and their superconducting properties, such as the transition temperature (Tc), 

critical current density (Jc), upper critical field (Hc2), and irreversibility field (Hirr). In particular, 

carbon containing dopants, including nano-meter sized carbon (nano-C), silicon carbide (SiC), 

carbon nanotubes (CNTs), hydrocarbons/carbohydrates, and graphite are effective means to 

enhance the Jc- field dependence and Hc2 [1-11]. The graphene, a single-layered sheet of carbon 

atoms arranged in honeycomb lattice with great strength and excellent electrical conductivity, 

could be an effective dopant to incorporate carbon into MgB2 and improve its Hiirr, Hc2 and the 

flux pinning properties without introduction of large amount of impurities which is a common 

problem for most dopants that have been studied so far. To our knowledge, there has been no 

report on the effects of graphene doping on the superconductivity of MgB2, partly due to the 

unavailability of graphene on a large scale. Recently, high-throughput solution processing of 

large-scale graphene has been reported by a number of groups [12-17]. Here, we report the effect 

of graphene doping on the electromagnetic properties of MgB2. 

Based on the works of Choucair et al.[18], sufficient quantities of graphene were made available for 

doping the bulk MgB2 samples. The lateral dimension of graphene sheet is about 0.1-10 µm with single 

atomic thickness estimates to be 4± 1 Å, and the elemental analysis of the residual graphene, as 

determined by XPS, was 86.4% C and 13.6% O by atomic composition (or by mass, 82.65% C and 

17.35% O). The bulk MgB2 samples were fabricated via a diffusion process. The crystalline boron 

powder (0.2 to 2.4 µm) 99.999% without and with graphene was prepared by ball milling with toluene 

medium. Then, the powders were dried in a vacuum oven to evaporate the medium. These powders were 

mixed and pressed into pellets. The pellets were then put into an iron tube filled with Mg powder (-

325mesh 99%). The samples were sintered at 850°C for 10 hrs in a quartz tube; the heating rate was 

5oCmin-1 under high purity argon (Ar 99.9%) gas. The phase and crystal structure of all the samples were 

investigated by X-ray diffraction (XRD). Tc was defined as the onset temperature at which diamagnetic 

properties were observed. The magnetic Jc was derived from the width of the magnetization loop using 

Bean’s model by a Physical Properties Measurement System (PPMS). Transport measurements for 
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resistivity (ρ) were done using a standard AC four probe method. In addition, Hc2(T) and Hirr(T)  were 

defined as the fields where the temperature dependent resistance at constant magnetic field R(Hc2, T) = 

0.9Rns and R(Hirr, T) = 0.1Rns with Rns being the normal state resistance near 40 K. The hysteresis loops of 

the MgB2 sample every 1.5 K in the 17- 35 K range. The symmetric hysteresis loops with respect to the 

magnetic field indicate the dominance of bulk pinning up to temperatures near Tc. 

The common format Mg(B1-xCx)2 with x=0, 0.037, and 0.087 was used. The composition of graphene 

doped MgB2 were 0, 3.7, and 8.7 at%, and as such, the samples are designated as G000, G037, and G087, 

respectively. We demonstrate that the graphene doping results in a large enhancement of the critical 

current density (Jc) by over one order of magnitude in high magnetic fields. The Jc achieved is as high as  

2.0 × 104 Acm-2 at 5 K and 8 T magnetic field for a graphene doping level of only 3.7 at%, with only a 

little  drop in Tc . The magnitude of the improvement is greater than that by other form of carbon at the 

same doping level. attributable to the high efficiency of the single carbon sheet of graphene [19-22].  

The lattice parameters, a, c, the ratio of a/c, grain size, strain, and full width at half maximum of the 

representative peak (110) calculated from the XRD patterns are shown in Table 1. Both the a-axis and c-

axis parameters vary little with increasing graphene doping level of 3.7%, apart from G087 sample, which 

shows a notable decrease in the a-axis parameter, suggesting that carbon (C) likely substitutes into the 

boron (B) sites, leading to a slight drop in Tc (36.7 K) for the G087 sample. We also observed that the full 

width at half maximum (FWHM) of the (110) peak increases with increasing graphene doping level. Such 

a peak broadening is caused by both grain size reduction and an increase in lattice strain. The calculated 

results on grain size and lattice strain from a Williamson-Hall plot [23] are given in Table 1. Also, the Tc 

onset determined from the AC susceptibility measurement is 38.9 K for the un-doped sample, dropping 

only slightly to 37.7 and 36.7 K for the G037 and G087 samples, respectively.  

Figure 1 shows the magnetic Jc(B) curves at 5 K and 20K for all the samples, which were sintered at 850oC 

for 10 hours. The Jc(B) values for all the doped samples are higher than the un-doped sample at high fields. 

The sample G037 gives the highest Jc at high fields: Jc increases by a factor of 30 at 5 K for the field of 10 

T, as compared to the un-doped sample, G000. Even though the Jc in the low field regime is depressed, a 

higher doping level (G087), still results in the rate of Jc dropping much slower than the un-doped sample, 
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clearly indicating strong flux pinning induced by the graphene doping. The most significant effect of 

graphene doping is the high effectiveness of graphene to improve flux pinning at lower doping levels, 

which distinguishes graphene from any other C containing dopants, for example, the Jc for G037 reached 

20,000 A/cm2 at 5 K and 8 T, exceeding or matching the best Jc resulting from dopants such as SiC, CNT, 

and carbohydrates at their optimal doping level of 10 at% [1,2,5-8], as well as nano-C at its optimal doping 

level of 5-6.4 at.% [3,4,9,10]. In the latter case, the Tc is substantially reduced to temperatures as low as 30 

K. Compared to the graphite doped MgB2 pellets prepared through the ball-milling and HIP the Jc of 

graphite doped MgB2 is better than graphene doping at 5 K [11], but at 20K, the Jc for graphene doping is 

much better than graphite. For example, the Jc for the graphene doped MgB2 at 20 K and 6 T is larger than 

that for graphite doped MgB2 by a factor of 50 [11]. In comparison, low levels of graphene doping have 

little effect on Tc and cause only a very small increase in impurities, not compromising the significant 

enhancement in Jc in high fields by the degradation in low-field Jc, which is a common issue for all other C 

based dopants. In order to see the difference with other C based dopants, the same preparation route was 

applied to 5 at% nano-C doped sample and the resultant decrease in Jc at 20K can be seen in the figure 1, 

because the Tc for nano- C doped MgB2 is only 34K. 

Regarding the flux pinning mechanism, it is established that the core interaction, which stands for the 

coupling of the locally distorted superconducting properties with the periodic variation of the 

superconducting order parameter is dominant over the magnetic interaction for MgB2 due to its  large GL 

coefficient κ (~26 in MgB2) [24]. The core interaction includes two types of mechanism: δTc and δl 

pinning. The δTc pinning refers to the spatial variation of the GL coefficient associated with disorder due 

to variation in the transition temperature Tc, while δl pinning is associated with the variation in the charge-

carrier mean free path l near lattice defects [24].  According to the collective pinning model, the disorder 

induced spatial fluctuations in the vortex lattice can be clearly divided into different regimes depending on 

the strength of the applied field: single-vortex, small-bundle, large-bundle, and charge-density-wave 

(CDW)-type relaxation of the vortex lattice [25] The crossover field, Bsb  is defined as a field separating  

single vortex regime into small bundles of vortices. Below Bsb, Jc is almost field independent. The Bsb as a 

function of reduced temperature (t=T/Tc) is described by the equation [25]: 
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for δl pinning. 

To define the pinning mechanism in our grapheme doped the samples, the crossover field, Bsb,  as a 

function of temperature with graphene doped sample (G037)  is plotted in figure 2 as red squares. Bsb is 

defined as a field where Jc drops by 5% only compared to Jc at zero field. It can be seen that the curve for 

δTc pinning calculated from q. (1) is in a good agreement with the experimental data, whereas, the curve 

for δl pinning according to Eq. (2) does not fit to the experimental data. For polycrystalline, thin film, 

and single crystalline MgB2 samples [25-27], it has been found that the dominant pinning mechanism is 

δTc pinning, which is related to spatial fluctuation of the transition temperature while most C-doped 

MgB2 samples displayed δl pinning mechanism [34] as a result of strong scattering and hence the 

shortening of the mean free path l owing to the presence of large amount of impurities in the doped 

samples. This is reflected by the significant increase in the residual resistivity [28]. The local strain was 

suggested to be one of potential pinning centres. However, we do not have strong evidence that the 

dominant pinning in the graphene doped MgB2 is due to the local strain effect alone. In contrast, the 

graphene doping sets an exceptional example, following the δTc pinning rather than δl pinning 

mechanism. This demonstrates the unique feature of the graphene doping. The amorphous phases can also 

act pinning centres, which is in favour for δTc pinning. Although the graphene doped samples have a lot 

of defects these samples contain low concentration of impurities compared to the samples by other forms 

of carbon dopants. One of major differences of graphene doping from other dopants is that the samples 

are relatively pure as evidenced by the low resistivity (20 µΩ cm) in the grapheme doped samples. 

Normally, the resistivity in carbon doped MgB2 ranges from 60 µΩ cm to as high as 300 µΩ cm. The 

high electrical connectivity is beneficial for Jc in low magnetic fields and high field performance; 

however we can not find any correlation between electrical connectivity with the Jc in the case here. The 
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graphene doped samples have higher resistivity than the un-doped MgB2 sample (3 µΩ cm), indicating 

electron scattering caused by graphene doping levels. But, it should be pointed out that the increase in 

resistivity is much smaller than for any other forms of carbon doped MgB2. 

Figure 3 shows the upper critical field, Hc2, and the irreversibility field, Hirr, versus the normalised Tc for all the 

samples. It is noted that both Hc2 and Hirr are increased by graphene doping. 

The mechanism for enhancement of Jc, Hirr, and Hc2 by carbon containing dopants has been well studied. 

The C can enter the MgB2 structure by substituting into B sites, and thus Jc and Hc2 are significantly 

enhanced due to the increased impurity scattering in the two-band MgB2 [29]. Above all, C substitution 

induces highly localised fluctuations in the structure and Tc, which have also been seen to be responsible 

for the enhancements in Jc, Hirr, and Hc2 by SiC doping [1]. Furthermore, residual thermal strain in the 

MgB2-dopant composites can also contribute to the improvement in flux pinning [30]. In the present work, 

the C substitution for B (up to 3.7 at.%) graphene doping is lower, from the table 1, the change of the a-

parameter is smaller, according to Avdeev et al result [31], the level of C substitution, x in the formula 

Mg(B1-xCx) , can be estimated as x=7.5 × Δ(c/a), where Δ(c/a) is the change in c/a compared to a pure 

sample. As both the a-axis and the c-axis lattice parameters determined from the XRD data showed little 

change within this doping range the level of carbon substitution is low at this doping level. This is in good 

agreement with the small reduction in Tc over this doping regime. At 8.7 at% doping, there is a noticeable 

drop in the a-axis parameter, suggesting C substitution for B, which is also consistent with the reduction 

in Tc.  The source of C could be the edges of the graphene sheets, although the graphene is very stable at 

the sintering temperature (850oC), as  there have been reports of graphene formation on substrates at 

temperatures ranging from 870-1320oC [32].  The significant enhancement in Jc and Hirr for G037 can not 

be explained by C substitution only.  

The microstructure revealed by high resolution transmission electron microscope (TEM) observations show 

that G037 sample has grain size of 100-200 nm which is consistent with value of the calculated grain size 

in table 1. The graphene doped samples have relatively higher density of defects compared with the 

undoped sample as shown in the TEM images of figure 4(a) and (c). The density of such defects is 

estimated to be 1/3 areas of TEM images, indicating high density in the doped samples. In figures 4(b) it 
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should be noted that the order of fringes varies from grain to grain, indicates that the defect is due to highly 

anisotropic of the interface. Similar fringes have been reported in the MgB2 [31] where these fringes were 

induced by tensile stress with dislocations and distortions which were commonly observed in the areas. As 

the graphene doped samples were sintered at 850oC for 10 hrs, the samples are expected to be relatively 

crystalline and contain few defects. Furthermore, as already shown above the C substitution level is low in 

graphene doped samples. Thus, the large amount of defects and amorphous phases on the nanoscale can be 

attributed to the residual thermal strain between the graphene and the MgB2 after cooling because the 

thermal expansion coefficient of graphene is very small while that for MgB2 is very large and highly 

anisotropic [19,20]. The large thermal strain can create a large stress field, and hence structure defects and 

lattice distortion. These defects and distortions on the order of the coherence length, , can play a role as 

effective pinning centres that are responsible for the enhanced flux pinning and Jc in the graphene doped 

MgB2. The thermal strain-induced enhancement of flux pinning has also been observed in the SiC-MgB2 

composite as there is s noticeable difference in thermal expansion coefficient between MgB2 and SiC [30]. 

In summary, the effects of graphene doping on the lattice parameters, Tc, Jc, and flux pinning in MgB2 

were investigated over a range of doping levels. By controlling the processing parameters, an optimised 

Jc(B) performance is achieved at a doping level of 3.7 at.%. Under these conditions, Jc was enhanced by an 

order of magnitude at 8 T and 5 K while Tc was only slightly decreased. The strong enhancement in the 

flux pinning is argued to be attributable to a combination of C substitution for B and thermal strain-

induced defects. Also, the evidence from collective pinning model suggests the δTc pinning mechanism 

rather than the δl pinning for the graphene doped MgB2, contrary to most doped MgB2. The strong 

enhancement of Jc, Hc2, and Hirr with low levels of graphene doping is promising for large-scale MgB2 

wire applications. 
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Table 1: The full width at half maximum (FWHM) of the (110) peak, the lattice parameters, and the 
transition temperature (Tc)  for the MgB2 samples, made with 0, 3.7, and 8.7 at% graphene 
doping via a diffusion process. 

 
 

Sample Lattice Constants Grain 
Size 

(nm) 

Strain 
(%) 

FWHM 
(110) 
() 

Tc 

(onset) 
(K) a (Å) c (Å) c/a

G000 3.084(1) 3.525(1) 1.143(1) 216(10) 0.1198(188) 0.288 38.9 

G037 3.082(1) 3.527(1) 1.144(1) 170(8) 0.1685(250) 0.400 37.7 

 G087 3.075(1) 3.525(1) 1.146(1) 171(11) 0.1782(330) 0.414 36.7 
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Figure Captions: 

 
 
Figure 1: Critical current density as a function of magnetic field at 5 K and 20K for with and without 

graphene doped bulk samples. 5 at% nano-C doped sample for a comparable result at the same 
sample preparation route. 

 
 
 
  
Figure 2: The crossover field Bsb as a function of temperature with graphene doped sample (G037).  
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Figure 3: Upper critical field, Hc2, and irreversibility field, Hirr, versus normalised transition temperature, Tc, for all 

graphenedoped and undoped MgB2 samples.  

 
 
Fig. 11.  (a) TEM image showing the defects with grains of the G037 sample with order of fringes varies 
between grains. Defects and fringes are indicated by arrow, and (b) HRTEM image of fringes. TEM 
images show large amount of defects and fringes can be observed in the graphene doped sample G037.  (c) 
TEM image of the undoped sample for reference 
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