The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on
superconductivity and electronic properties have been studied. A significant
enhancement of the superconducting transition temperature (TC) up to 21K was
observed in the most Fe deficient film (x=0.8). Based on the observed and
simulated structural variation results, there is a high possibility that Fe
vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows
a strong relationship with the lattice strain effect induced by Fe vacancies.
Importantly, the presence of Fe vacancies alters the charge carrier population
by introducing electron charge carriers, with the Fe deficient film showing
more metallic behavior than the defect-free film. Our study provides a means to
enhance the superconductivity and tune the charge carriers via Fe vacancy, with
no reliance on chemical doping.Comment: 15 pages, 4 figure