14 research outputs found

    High mesothelin expression by immunohistochemistry predicts improved survival in pleural mesothelioma

    Get PDF
    Aims: Mesothelin (MSLN) is a cancer-associated antigen that is overexpressed in malignancies such as mesothelioma, pancreatic and ovarian cancer. It is also a target for novel personalised therapies, including antibodies, antibody–drug conjugates and chimeric antigen receptor T cells. Immunohistochemistry may predict those who would best respond to anti-mesothelin therapies and guide decisions in therapeutic strategy. This study aimed to assess the intensity and distribution of MSLN immunostaining in mesothelioma, and to determine the prognostic value of MSLN expression by histochemical-score (H-score). Methods and results: The MN1 anti-MSLN antibody was used to stain a formalin-fixed paraffin-embedded tissue microarray of histologically confirmed mesothelioma from 75 consecutive patients who had undergone pleurectomy with or without decortication. MSLN positivity, the staining intensity, distribution of staining and H-score were evaluated. The correlation of H-score with prognosis was investigated. Sixty-six per cent of epithelioid tumours were MSLN-positive (with expression in > 5% tumour cells). Of MSLN-expressing epithelioid tumours, 70.4% had moderate (2+) or strong (3+) intensity MSLN immunostaining, although only 37% of samples had staining in ≥ 50% of tumour cells. In multivariate analysis, MSLN H-score as a continuous variable and an H-score ≥ 33 were independent predictors of improved survival (P = 0.04 and P < 0.001, respectively). Conclusions: MSLN expression was more heterogenous in epithelioid mesothelioma than reported previously. Therefore, it would be appropriate to perform an immunohistochemical assessment of MSLN expression to stratify and assess patient suitability for mesothelin-targeted personalised therapies, such as chimeric antigen receptor T cells

    Accurate isolation and detection of circulating tumor cells using enrichment-free multiparametric high resolution imaging

    Get PDF
    IntroductionThe reliable and accurate detection of rare circulating tumor cells (CTCs) from cancer patient blood samples promises advantages in both research and clinical applications. Numerous CTC detection methods have been explored that rely on either the physical properties of CTCs such as density, size, charge, and/or their antigen expression profiles. Multiple factors can influence CTC recovery including blood processing method and time to processing. This study aimed to examine the accuracy and sensitivity of an enrichment-free method of isolating leukocytes (AccuCyte® system) followed by immunofluorescence staining and high-resolution imaging (CyteFinder® instrument) to detect CTCs.MethodHealthy human blood samples, spiked with cancer cells from cancer cell lines, as well as blood samples obtained from 4 subjects diagnosed with cancer (2 pancreatic, 1 thyroid, and 1 small cell lung) were processed using the AccuCyte-CyteFinder system to assess recovery rate, accuracy, and reliability over a range of processing times.ResultsThe AccuCyte-CyteFinder system was highly accurate (95.0%) at identifying cancer cells in spiked-in samples (in 7.5 mL of blood), even at low spiked-in numbers of 5 cells with high sensitivity (90%). The AccuCyte-CyteFinder recovery rate (90.9%) was significantly higher compared to recovery rates obtained by density gradient centrifugation (20.0%) and red blood cell lysis (52.0%). Reliable and comparable recovery was observed in spiked-in samples and in clinical blood samples processed up to 72 hours post-collection. Reviewer analysis of images from spiked-in and clinical samples resulted in high concordance (R-squared value of 0.998 and 0.984 respectively).DiscussionThe AccuCyte-CyteFinder system is as an accurate, sensitive, and clinically practical method to detect and enumerate cancer cells. This system addresses some of the practical logistical challenges in incorporating CTCs as part of routine clinical care. This could facilitate the clinical use of CTCs in guiding precision, personalized medicine

    Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants

    Get PDF
    The effects of grafting on Na and Cl– uptake and distribution in plant tissues were quantified in a greenhouse experiment using six combinations of melon (Cucumis melo L. cv. Arava) and pumpkin (Cucurbita maxima Duchesne×Cucurbita moschata Duchesne cv. TZ-148): non-grafted, self-grafted, melons grafted on pumpkins, and pumpkins grafted on melons. Total Na concentration in shoots of plants with pumpkin or melon rootstocks was <60 mmol kg−1 and >400 mmol kg−1, respectively, regardless of the scion. In contrast, shoot Cl– concentrations were quite similar among the different scion–rootstock combinations. Na concentrations in exudates from cut stems of plants with a pumpkin rootstock were very low (<0.18 mM), whereas those in the exudates of plants with melon rootstocks ranged from 4.7 mM to 6.2 mM, and were quite similar to the Na concentration in the irrigation water. Root Na concentrations averaged 11.7 times those in the shoots of plants with pumpkin rootstocks, while in plants with melon rootstocks, values were similar. Two mechanisms could explain the decrease in shoot Na concentrations in plants with pumpkin rootstocks: (i) Na exclusion by the pumpkin roots; and (ii) Na retention and accumulation within the pumpkin rootstock. Quantitative analysis indicated that the pumpkin roots excluded ∼74% of available Na, while there was nearly no Na exclusion by melon roots. Na retention by the pumpkin rootstocks decreased its amount in the shoot by an average 46.9% compared with uniform Na distribution throughout the plant. In contrast, no retention of Na could be found in plants grafted on melons

    Role of p21-activated kinases in pancreatic cancer

    Get PDF
    © 2016 Dr. Dannel YeoPancreatic cancer remains one of the most lethal of all solid tumours with an overall 5-year survival rate of 7%. Management has not improved significantly over the last thirty years and based on current trends, is expected to become the second leading cause of cancer-related mortality by 2030. Treatment options are limited and gemcitabine-based chemotherapy remains the standard of care as a single agent. Furthermore, the presence of the dense stroma, characteristic of pancreatic cancer, contributes to therapeutic resistance and poor therapeutic response. Thus, a better understanding of the underlying genetic and molecular mechanisms is urgently required to find targeted and effective therapies. There is growing evidence that p21-activated kinases (PAKs) are involved in pancreatic carcinogenesis. The PAK family consist of six isoforms, two of which, PAK1 and PAK4, are upregulated and/or hyper-activated in pancreatic cancer. PAK1 can mediate many different cellular processes including the regulation of cytoskeletal dynamics and cell adhesion, the evasion of apoptosis, the promotion of cell survival, proliferation, migration and invasion, the fibrosis that constitutes the stroma, and the interplay between cancer cells and the stroma. PAK1’s role has not been fully elucidated in pancreatic cancer and has not been evaluated as a target for therapeutic intervention. The work presented in this thesis investigates the role of PAK1 in pancreatic cancer and the effect of PAK1 inhibitors, alone and in combination with gemcitabine, on pancreatic cancer growth, metastasis, stroma, and survival. First, we investigated the effect of glaucarubinone, a known inhibitor that reduces the activity of PAK1 and PAK4, on pancreatic cancer growth, migration and murine survival. Using 4 human and 2 murine pancreatic cancer cell lines, PAK1 and PAK4 was expressed in all pancreatic cancer cell lines tested and proliferation and migration/invasion inhibited by treatment of glaucarubinone with reduction in PAK1 and PAK4 activity in vitro. Synergistic inhibition was observed when combined with gemcitabine with decrease in pancreatic cancer proliferation in vitro, decrease in pancreatic cancer growth in human xenograft tumours in vivo, and increase in murine survival in an orthotopic immunocompetent model in vivo. This was one of the first studies that showed clinical benefit of targeting and reducing PAK1 in pancreatic cancer. Using more direct methods of reducing PAK1 activity, shRNA knockdown systems, and a PAK1 selective inhibitor, FRAX597, were utilised. shRNA knockdown of PAK1 resulted in a reduction in pancreatic cancer cell proliferation and survival and sensitised cells to gemcitabine in vitro. PAK1 was also found to be key regulator of signalling pathways such as PI3K and HIF1α. FRAX597 treatment decreased pancreatic cancer cell proliferation and migration/invasion and synergised with gemcitabine to decrease cell proliferation in vitro. FRAX597, combined with gemcitabine, reduced pancreatic tumour volume and increased murine survival in preclinical orthotopic immunocompetent murine models in vivo. Although, further clinical validation is required, it illustrates the clinical potential of a PAK1 inhibitor, FRAX597, combined with gemcitabine to improve pancreatic cancer patient outcomes. PAK1’s role was investigated in pancreatic stellate cells (PSCs), which are primarily responsible for the fibrosis that constitutes the pancreatic cancer stroma. This was the first study to show the presence of PAK1 activity in isolated human PSCs. The treatment of the selective PAK1 inhibitor, FRAX597, on PSCs resulted in a reduction in their activation, proliferation, and increase in apoptosis in vitro. PAK1 knockout mice tumours had decreased expression and activity of PAK1, associated with increased murine survival, showing the effect of depleting host PAK1 in an orthotopic immunocompetent murine model in vivo. These results implicate PAK1 as a regulator of PSC activation, proliferation and apoptosis and targeting stromal PAK1 could increase therapeutic response and survival of patients with pancreatic cancer. Together, these results illustrate the importance of PAK1 signalling in pancreatic cancer and the possible therapeutic benefit of targeting PAK1 with gemcitabine on pancreatic cancer growth and the stroma to increase the survival of pancreatic cancer patients

    Additional file 2: Figure S2. of FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine

    No full text
    FRAX597 and gemcitabine decreased Ki67 staining on orthotopic pancreatic tail tumours. Pan02 murine pancreatic tumours from the orthotopic pancreatic tail tumour model treated with saline (control; CT), FRAX597 (FRAX), gemcitabine (Gem), or FRAX597 and gemcitabine (Gem + FRAX) at the doses given in the Materials and Methods section, were fixed and stained for the proliferative marker, Ki67. Three representative images were taken from each treatment group. (PPTX 2275 kb
    corecore