26 research outputs found

    Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane.

    Get PDF
    The production of syngas (H2 and CO)-a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen-through the dry (CO2-) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we report on the effects of the metal oxide support (γ-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) on the low-temperature (ca. 500-750 ∘C) DRM activity, selectivity, resistance against carbon deposition and iridium nanoparticles sintering under oxidative thermal aging. A variety of characterization techniques were implemented to provide insight into the factors that determine iridium intrinsic DRM kinetics and stability, including metal-support interactions and physicochemical properties of materials. All Ir/γ-Al2O3, Ir/ACZ and Ir/CZ catalysts have stable DRM performance with time-on-stream, although supports with high oxygen storage capacity (ACZ and CZ) promoted CO2 conversion, yielding CO-enriched syngas. CZ-based supports endow Ir exceptional anti-sintering characteristics. The amount of carbon deposition was small in all catalysts, however decreasing as Ir/γ-Al2O3 > Ir/ACZ > Ir/CZ. The experimental findings are consistent with a bifunctional reaction mechanism involving participation of oxygen vacancies on the support's surface in CO2 activation and carbon removal, and overall suggest that CZ-supported Ir nanoparticles are promising catalysts for low-temperature dry reforming of methane (LT-DRM)

    Stabilization of catalyst particles against sintering on oxide supports with high oxygen ion lability exemplified by Ir-catalyzed decomposition of N2O

    Get PDF
    Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering

    Selective Catalytic Reduction of NOx over Perovskite-Based Catalysts Using CxHy(Oz), H2 and CO as Reducing Agents—A Review of the Latest Developments

    No full text
    Selective catalytic reduction (SCR) is probably the most widespread process for limiting NOx emissions under lean conditions (O2 excess) and, in addition to the currently used NH3 or urea as a reducing agent, many other alternative reductants could be more promising, such as CxHy/CxHyOz, H2 and CO. Different catalysts have been used thus far for NOx abatement from mobile (automotive) and stationary (fossil fuel combustion plants) sources, however, perovskites demand considerable attention, partly due to their versatility to combine and incorporate various chemical elements in their lattice that favor deNOx catalysis. In this work, the CxHy/CxHyOz−, H2−, and CO-SCR of NOx on perovskite-based catalysts is reviewed, with particular emphasis on the role of the reducing agent nature and perovskite composition. An effort has also been made to further discuss the correlation between the physicochemical properties of the perovskite-based catalysts and their deNOx activity. Proposed kinetic models are presented as well, that delve deeper into deNOx mechanisms over perovskite-based catalysts and potentially pave the way for further improving their deNOx efficiency

    Nanocatalysis for Environmental Protection, Energy, and Green Chemistry

    No full text
    Nowadays, nanoscience and nanotechnology depict cutting-edge areas of modern science and technology across an array of applications, including heterogeneous catalysis [...

    Electropositive Promotion by Alkalis or Alkaline Earths of Pt-Group Metals in Emissions Control Catalysis: A Status Report

    No full text
    Recent studies have shown that the catalytic performance (activity and/or selectivity) of Pt-group metal (PGM) catalysts for the CO and hydrocarbons oxidation as well as for the (CO, HCs or H2)-SCR of NOx or N2O can be remarkably affected through surface-induced promotion by successful application of electropositive promoters, such as alkalis or alkaline earths. Two promotion methodologies were implemented for these studies: the Electrochemical Promotion of Catalysis (EPOC) and the Conventional Catalysts Promotion (CCP). Both methodologies were in general found to achieve similar results. Turnover rate enhancements by up to two orders of magnitude were typically achievable for the reduction of NOx by hydrocarbons or CO, in the presence or absence of oxygen. Subsequent improvements (ca. 30⁻60 additional percentage units) in selectivity towards N2 were also observed. Electropositively promoted PGMs were also found to be significantly more active for CO and hydrocarbons oxidations, either when these reactions occur simultaneously with deNOx reactions or not. The aforementioned direct (via surface) promotion was also found to act synergistically with support-mediated promotion (structural promotion); the latter is typically implemented in TWCs through the complex (Ce⁻La⁻Zr)-modified γ-Al2O3 washcoats used. These attractive findings prompt to the development of novel catalyst formulations for a more efficient and cost-effective control of the emissions of automotives and stationary combustion processes. In this report the literature findings in the relevant area are summarized, classified and discussed. The mechanism and the mode of action of the electropositive promoters are consistently interpreted with all the observed promoting phenomena, by means of indirect (kinetics) and direct (spectroscopic) evidences

    Hydrogen Sulfide (H2S) Removal via MOFs

    No full text
    The removal of the environmentally toxic and corrosive hydrogen sulfide (H2S) from gas streams with varying overall pressure and H2S concentration is a long-standing challenge faced by the oil and gas industries. The present work focuses on H2S capture using a relatively new type of material, namely metal-organic frameworks (MOFs), in an effort to shed light on their potential as adsorbents in the field of gas storage and separation. MOFs hold great promise as they make possible the design of structures from organic and inorganic units, but also as they have provided an answer to a long-term challenging objective, i.e., how to design extended structures of materials. Moreover, in designing MOFs, one may functionalize the organic units and thus, in essence, create pores with different functionalities, and also to expand the pores in order to increase pore openings. The work presented herein provides a detailed discussion, by thoroughly combining the existing literature on new developments in MOFs for H2S removal, and tries to provide insight into new areas for further research

    The Role of Alkali and Alkaline Earth Metals in the CO2 Methanation Reaction and the Combined Capture and Methanation of CO2

    No full text
    CO2 methanation has great potential for the better utilization of existing carbon resources via the transformation of spent carbon (CO2) to synthetic natural gas (CH4). Alkali and alkaline earth metals can serve both as promoters for methanation catalysts and as adsorbent phases upon the combined capture and methanation of CO2. Their promotion effect during methanation of carbon dioxide mainly relies on their ability to generate new basic sites on the surface of metal oxide supports that favour CO2 chemisorption and activation. However, suppression of methanation activity can also occur under certain conditions. Regarding the combined CO2 capture and methanation process, the development of novel dual-function materials (DFMs) that incorporate both adsorption and methanation functions has opened a new pathway towards the utilization of carbon dioxide emitted from point sources. The sorption and catalytically active phases on these types of materials are crucial parameters influencing their performance and stability and thus, great efforts have been undertaken for their optimization. In this review, we present some of the most recent works on the development of alkali and alkaline earth metal promoted CO2 methanation catalysts, as well as DFMs for the combined capture and methanation of CO2
    corecore