2,141 research outputs found
Water content of the Martian soil: Laboratory simulations of reflectance spectra
Reflectance spectra from the surface of Mars collected by instruments such as the imaging spectrometer (ISM) onboard the 1988 Soviet Phobos 2 spacecraft exhibit strong 3 μm absorption features that have long been attributed to hydrated materials on the Martian surface. This interpretation is consistent with a series of chemical weathering models suggesting an abundance of palagonites, clays, and other hydrated mineral phases in the Martian fines. Little work, however, has been done to constrain the actual water content of the Martian surface materials. New laboratory data presented here show that the ISM spectra are consistent with up to 4% water by weight and that the deep hydration features observed in the spacecraft data could be due to less than 0.5% water if the hydrated phases are present in the form of grain coatings. These results are consistent with the somewhat uncertain in situ measurements obtained by the Viking landers which yielded approximately 2 wt % water from samples heated to 500°C. On the basis of this work, we expect the TEGA instrument on the Mars '98 lander to find less than 4% adsorbed or bound water in the upper few centimeters of the Martian soil
Problems with Fitting to the Power-Law Distribution
This short communication uses a simple experiment to show that fitting to a
power law distribution by using graphical methods based on linear fit on the
log-log scale is biased and inaccurate. It shows that using maximum likelihood
estimation (MLE) is far more robust. Finally, it presents a new table for
performing the Kolmogorov-Smirnof test for goodness-of-fit tailored to
power-law distributions in which the power-law exponent is estimated using MLE.
The techniques presented here will advance the application of complex network
theory by allowing reliable estimation of power-law models from data and
further allowing quantitative assessment of goodness-of-fit of proposed
power-law models to empirical data.Comment: 4 pages, 1 figure, 2 table
Stability of hydroxylated minerals on Mars: A study on the effects of exposure to ultraviolet radiation
The density and composition of the Martian atmosphere allow solar ultraviolet photons with wavelengths as short as 190 nm to reach the surface. We investigate the hypothesis that this UV radiation is capable of inducing the release of water from iron oxyhydroxide minerals resulting in the formation of oxide phases. These experiments, which utilize a quadrupole mass spectrometer to monitor the water vapor pressure above mineral samples during cyclic exposure to ultraviolet radiation, offer 5 to 6 orders of magnitude greater sensitivity than previous attempts to establish and quantify this process. We find no evidence that UV photons are capable of liberating OH from the crystal lattice of minerals, and we set a minimum ultraviolet radiation-induced dehydroxylation time of 10^8 years for removal of this structural OH from mineral particles at the Martian surface. The overturning timescales for surface fines are likely to be shorter than this lower limit for exposure time. Thus we conclude that UV-stimulated dehydroxylation is not a significant process at the Martian surface and that iron oxyhydroxides, if formed during an earlier water-rich environment, should still be found on Mars today. The lack of clear evidence for iron oxyhydroxides at the Martian surface further suggests that Mars' surface was never warm and wet for a long enough period of time for Earth-like weathering to have occurred
Aqueous Alteration on Mars: Evidence from Landed Missions
Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been extensively altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale craters Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planums sulfate-rich sedimentary deposit containing jarosite is the most famous acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev craters Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale craters Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly resulting in large amounts of short-range ordered materials and little physical separation of primary and secondary materials). Most of the aqueous alteration appears to have occurred early in the planets history; however, minor aqueous alteration may be occurring at the surface today (e.g., thin films of water forming carbonates akin to those discovered by Phoenix)
Phosphates at the Surface of Mars: Primary Deposits and Alteration Products
Phosphorus is an essential element in terrestrial organisms and thus characterizing the occurrences of phosphate phases at the martian surface is crucial in the assessment of habitability. The Alpha Particle X-Ray Spectrometers onboard Spirit, Opportunity and Curiosity discovered a variety of primary and secondary phosphate phases allowing direct comparisons across the three landing sites. The Spirit rover at Gusev Crater encountered the "Wishstone/Watchtower" class of P-rich (up to 5.2 wt% P2O5) rocks interpreted to be alkaline volcanic rocks with a physical admixture of approximately 10 to 20% merrillite [Usui et al 2008]. These rocks are characterized by elevated Ti and Y and anomalously low Cr and Ni, which could largely reflect the nature of the protoliths: Evolved magmatic rocks. Many of these chemical signatures are also found in pyroclastic deposits at nearby "Home Plate" and in phosphate precipitates derived from fluid interactions with these rocks ("Paso Robles" soils). The Opportunity rover at Meridiani Planum recently analyzed approximately 4 cm clast in a fine-grained matrix, one of numerous rocks of similar appearance at the rim of Endeavour Crater. This clast, "Sarcobatus," has minor enrichments in Ca and P relative to the matrix, and like the P-rich rocks at Gusev, Sarcobatus also shows elevated Al and Ti. On the same segment of the Endeavour rim, subsurface samples were found with exceptional levels of Mn (approximately 3.5 wt% MnO). These secondary and likely aqueous deposits contain strong evidence for associated Mg-sulfate and Ca-phosphate phases. Finally, the Curiosity traverse at Gale crater encountered P-rich rocks compositionally comparable to Wishstone at Gusev, including elevated Y. Phosphorous-rich rocks with similar chemical characteristics are prevalent on Mars, and the trace and minor element signatures provide constraints on whether these are primary deposits, secondary products of physical weathering or secondary products of chemical weathering
Compositions of Diverse Noachian Lithologies at Marathon Valley, Endeavour Crater Rim, Mars
Mars Exploration Rover Opportunity has been exploring Meridiani Planum for 11+ years, and is presently investigating the geology of rim segments of 22 km diameter, Noachian-aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology and impact breccias representing ejecta from the crater. Opportunity is now investigating the head (higher elevation, western end) of Marathon Valley. This valley cuts eastward through the central portion of the Cape Tribulation rim segment and provides a window into the lower stratigraphic record of the rim. At the head of Marathon Valley is a shallow (few 10s of cm), ovoid depression approximately 2736 m in size, named Spirit of Saint Louis, that is surrounded by approximately 20-30 cm wide zone of more reddish rocks (red zone). Opportunity has just entered a region of Marathon Valley that shows evidence for Fe-Mg smectite in Compact Reconnaissance Imaging Spectrometer for Mars spectra indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. Rocks at the head of Marathon Valley and within Spirit of Saint Louis are breccias (valley-head rocks). In some areas, layering inside Spirit of Saint Louis appears continuous with the rocks outside. The valley-head rocks are of similar, generally basaltic composition. The continuity in composition, texture and layering suggest the valley-head rocks are coeval breccias, likely from the Endeavour impact. These local breccias are similar in non-volatile-element composition to breccias investigated elsewhere on the rim. Rocks within the red zone are like those on either side in texture, but have higher Al, Si and Ge, and lower S, Mn, Fe, Ni and Zn as compared to rocks on either side. The valley-head rocks have higher S than most Endeavour rim breccias, while red zone rocks are like those latter breccias in S. Patches within the rocks outside Spirit of Saint Louis have higher Al, Si and Ge indicating red-zone-style alteration extended beyond the narrow red zone. Rocks on either side of the red zone and patches within it have the multispectral signature (determined by Panoramic Camera) of red hematite indicating an oxidizing environment. The red zone appears to be a thin alteration zone marking the border of Spirit of Saint Louis, but the origin of this morphologic feature remains obscure
Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains
BACKGROUND:
Although cutaneous ulcers (CU) in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU) and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin?
METHODOLOGY/PRINCIPAL FINDINGS:
To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya) and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin.
CONCLUSIONS/SIGNIFICANCE:
These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions
Search for nucleon decays with EXO-200
A search for instability of nucleons bound in Xe nuclei is reported
with 223 kgyr exposure of Xe in the EXO-200 experiment. Lifetime
limits of 3.3 and 1.9 yrs are established for
nucleon decay to Sb and Te, respectively. These are the most
stringent to date, exceeding the prior decay limits by a factor of 9 and 7,
respectively
Investigation of radioactivity-induced backgrounds in EXO-200
The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires
extremely low background and a good understanding of their sources and their
influence on the rate in the region of parameter space relevant to the
0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and
{\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta}
experiment. With this work we try to better understand the location and
strength of specific background sources and compare the conclusions to
radioassay results taken before and during detector construction. Finally, we
discuss the implications of these studies for EXO-200 as well as for the
next-generation, tonne-scale nEXO detector.Comment: 9 pages, 7 figures, 3 table
- …