602 research outputs found

    I\u27ve Found My Dream Girl

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1581/thumbnail.jp

    Salt wedge dynamics lead to enhanced sediment trapping within side embayments in high-energy estuaries

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2226–2242, doi:10.1002/2016JC012595.Off-river coves and embayments provide accommodation space for sediment accumulation, particularly for sandy estuaries where high energy in the main channel prevents significant long-term storage of fine-grained material. Seasonal sediment inputs to Hamburg Cove in the Connecticut River estuary (USA) were monitored to understand the timing and mechanisms for sediment storage there. Unlike in freshwater tidal coves, sediment was primarily trapped here during periods of low discharge, when the salinity intrusion extended upriver to the cove entrance. During periods of low discharge and high sediment accumulation, deposited sediment displayed geochemical signatures consistent with a marine source. Numerical simulations reveal that low discharge conditions provide several important characteristics that maximize sediment trapping. First, these conditions allow the estuarine turbidity maximum (ETM) to be located in the vicinity of the cove entrance, which increases sediment concentrations during flood tide. Second, the saltier water in the main channel can enter the cove as a density current, enhancing near-bed velocities and resuspending sediment, providing an efficient delivery mechanism. Finally, higher salinity water accumulates in the deep basin of the cove, creating a stratified region that becomes decoupled from ebb currents, promoting retention of sediment in the cove. This process of estuarine-enhanced sediment accumulation in off-river coves will likely extend upriver during future sea level rise.NSF Grant Numbers: EAR-1148244 , OCE-09264272017-09-1

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow

    Get PDF
    IEEE Transactions on Biomedical Engineering, 55(2): pp. 643-649.The drug-eluting stent’s increasingly frequent occurrence late stage thrombosis have created a need for new strategies for intervention in coronary artery disease. This paper demonstrates further development of our minimally invasive, targeted drug delivery system that uses induced magnetism to administer repeatable and patient specific dosages of therapeutic agents to specific sites in the human body. Our first aim is the use of magnetizable stents for the prevention and treatment of coronary restenosis; however, future applications include the targeting of tumors, vascular defects, and other localized pathologies. Future doses can be administered to the same site by intravenous injection. This implant-based drug delivery system functions by placement of a weakly magnetizable stent or implant at precise locations in the cardiovascular system, followed by the delivery of magnetically susceptible drug carriers. The stents are capable of applying high local magnetic field gradients within the body, while only exposing the body to a modest external field. The local gradients created within the blood vessel create the forces needed to attract and hold drug-containing magnetic nanoparticles at the implant site. Once these particles are captured, they are capable of delivering therapeutic agents such as antineoplastics, radioactivity, or biological cells

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Potential role of levocarnitine supplementation for the treatment of chemotherapy-induced fatigue in non-anaemic cancer patients

    Get PDF
    Ifosfamide and cisplatin cause urinary loss of carnitine, which is a fundamental molecule for energy production in mammalian cells. We investigated whether restoration of the carnitine pool might improve chemotherapy-induced fatigue in non-anaemic cancer patients. Consecutive patients with low plasma carnitine levels who experienced fatigue during chemotherapy were considered eligible for study entry. Patients were excluded if they had anaemia or other conditions thought to be causing asthenia. Fatigue was assessed by the Functional Assessment of Cancer Therapy-Fatigue quality of life questionnaire. Treatment consisted of oral levocarnitine 4 g daily, for 7 days. Fifty patients were enrolled; chemotherapy was cisplatin-based in 44 patients and ifosfamide-based in six patients. In the whole group, baseline mean Functional Assessment of Cancer Therapy-Fatigue score was 19.7 (±6.4; standard deviation) and the mean plasma carnitine value was 20.9 μM (±6.8; standard deviation). After 1 week, fatigue ameliorated in 45 patients and the mean Functional Assessment of Cancer Therapy-Fatigue score was 34.9 (±5.4; standard deviation) (P<.001). All patients achieved normal plasma carnitine levels. Patients maintained the improved Functional Assessment of Cancer Therapy-Fatigue score until the next cycle of chemotherapy. In selected patients, levocarnitine supplementation may be effective in alleviating chemotherapy-induced fatigue. This compound deserves further investigations in a randomised, placebo-controlled study

    Oxaliplatin neurotoxicity – no general ion channel surface-charge effect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxaliplatin is a platinum-based chemotherapeutic drug. Neurotoxicity is the dose-limiting side effect. Previous investigations have reported that acute neurotoxicity could be mediated via voltage-gated ion channels. A possible mechanism for some of the effects is a modification of surface charges around the ion channel, either because of chelation of extracellular Ca<sup>2+</sup>, or because of binding of a charged biotransformation product of oxaliplatin to the channel. To elucidate the molecular mechanism, we investigated the effects of oxaliplatin and its chloride complex [Pt(dach)oxCl]<sup>- </sup>on the voltage-gated Shaker K channel expressed in <it>Xenopus </it>oocytes. The recordings were made with the two-electrode and the cut-open oocyte voltage clamp techniques.</p> <p>Conclusion</p> <p>To our surprise, we did not see any effects on the current amplitudes, on the current time courses, or on the voltage dependence of the Shaker wild-type channel. Oxaliplatin is expected to bind to cysteines. Therefore, we explored if there could be a specific effect on single (E418C) and double-cysteine (R362C/F416C) mutated Shaker channels previously shown to be sensitive to cysteine-specific reagents. Neither of these channels were affected by oxaliplatin. The clear lack of effect on the Shaker K channel suggests that oxaliplatin or its monochloro complex has no general surface-charge effect on the channels, as has been suggested before, but rather a specific effect to the channels previously shown to be affected.</p

    Discovery of a Novel Activator of KCNQ1-KCNE1 K+ Channel Complexes

    Get PDF
    KCNQ1 voltage-gated K+ channels (Kv7.1) associate with the family of five KCNE peptides to form complexes with diverse gating properties and pharmacological sensitivities. The varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ channel to function in both excitable and non excitable tissues. Small molecule activators would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE complexes; however, there are very few known activators of KCNQ1 channels and most are ineffective on the physiologically relevant KCNQ1-KCNE complexes. Here we show that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 complexes co-expressed in Xenopus oocytes at millimolar concentrations. PBA shifts the voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative potentials. Analysis of different-sized charge carriers revealed that PBA also targets the permeation pathway of KCNQ1 channels. Activation by the boronic acid moiety has some specificity for the Kv7 family members (KCNQ1, KCNQ2/3, and KCNQ4) since PBA does not activate Shaker or hERG channels. Furthermore, the commercial availability of numerous PBA derivatives provides a large class of compounds to investigate the gating mechanisms of KCNQ1-KCNE complexes
    corecore