31 research outputs found

    Role of calcineurin in Porphyromonas gingivalis-induced myocardial cell hypertrophy and apoptosis

    Get PDF
    Background and objective: Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of calcineurin signaling pathway in P. gingivalis-induced H9c2 myocardial cell hypertrophy and apoptosis. Methods: DNA fragmentation, nuclear condensation, cellular morphology, calcineurin protein, Bcl2- associated death promoter (Bad) and nuclear factor of activated T cell (NFAT)-3 protein products in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, DAPI, immunofluorescence, and Western blotting following P. gingivalis and/or pre-administration of CsA (calcineurin inhibitors cyclosporin A). Results: P. gingivalis not only increased calcineurin protein, NFAT-3 protein products and cellular hypertrophy, but also increased DNA fragmentation, nuclear condensation and Bad protein products in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, and Bad of H9c2 cells treated with P. gingivalis were all significantly reduced after pre-administration of CsA. Conclusion: Our findings suggest that the activity of calcineurin signal pathway may be initiated by P. gingivalis and further lead to cell hypertrophy and death in culture H9c2 myocardial cells

    Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at root s=13 TeV

    Get PDF
    Abstract:A measurement of the top quark mass is performed using a data sample en-riched with single top quark events produced in thetchannel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb−1, recorded at√s= 13TeV by the CMS experiment at the LHC in 2016. Candidate events are selectedby requiring an isolated high-momentum lepton (muon or electron) and exactly two jets,of which one is identified as originating from a bottom quark. Multivariate discriminantsare designed to separate the signal from the background. Optimized thresholds are placedon the discriminant outputs to obtain an event sample with high signal purity. The topquark mass is found to be172.13+0.76−0.77GeV, where the uncertainty includes both the sta-tistical and systematic components, reaching sub-GeV precision for the first time in thisevent topology. The masses of the top quark and antiquark are also determined separatelyusing the lepton charge in the final state, from which the mass ratio and difference aredetermined to be0.9952+0.0079−0.0104and0.83+1.79−1.35GeV, respectively. The results are consistentwithCPTinvariance

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    Experiences of peripheral blood stem cells collection from radial artery for unrelated donor transplantation

    Get PDF

    Ghrelin Induces Cell Migration Through GHS-R, CaMKII, AMPK, and NF-kappa B Signaling Pathway in Glioma Cells

    No full text
    Ghrelin is a newly discovered gastric peptide which stimulates food intake, energy balance, and growth hormone release. Recent reports have also shown that circulating ghrelin can efficiently reach the brain. However, the molecular mechanisms and pathophysiologic roles underlying ghrelin-induced glioma migration remain unclear. Glioma is the most common primary adult brain tumor with poor prognosis because of the spreading of tumor cell to the other regions of brain easily. In present study, we found that application of recombinant human ghrelin enhances the glioma cell migration in both rat C6 and human U251 cells. Ghrelin and its receptor GHS-R (growth hormone secretagogue receptor) are expressed in a wide variety of tissues and cell types, including various cancer cells. However, little is known about the expression of ghrelin or GHS-R in brain tumors. Here, we found that ghrelin increased GHS-R receptor up-regulation, and the enhancement of ghrelin-induced glioma cell motility markedly inhibited by a GHS-R antagonist. In addition, ghrelin-mediated migration was attenuated by treatment of CaMKII inhibitor, and AMPK inhibitors and pre-transfection with AMPK siRNA. Moreover, ghrelin stimulation also increased the phosphorylation of CaMKII and AMPK. Treatment with three different types of NF-kappa B inhibitors or pre-transfection with KM-IKK alpha, or KM-IKK beta also reduced ghrelin-induced glioma cell migration. Moreover, treatment of ghrelin also induced IKK alpha/beta activation, I kappa B alpha phosphorylation, p65 phosphorylation at Ser(536), and increased NF-kappa B-DNA binding activity and kappa B-transcriptional activity. These results indicate that ghrelin enhances migration of glioma cells is mainly regulated by the GHS-R, CaMKII, AMPK, and NF-kappa B pathway. J. Cell. Biochem. 112: 2931-2941, 2011. (C) 2011 Wiley-Liss, Inc

    Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes

    No full text
    Our previous report has shown that berberine effectively inhibits LPS- and IFN-gamma-induced neuroinflammation in microglia cells. Recently, we also reported that HO-1 (Heme oxygenase-1) may be a therapeutic target to regulate neuroinflammation in microglia cells. The present study examined the ability of berberine, the major constituents of Chinese herb Rhizoma coptidis, to induce expression of HO-1, and analyzed its signaling mechanism in rat brain astrocytes. HO-1 is known as an antioxidant enzyme which helps to protect against cellular damage and maintains tissue homeostasis. Here, we found that berberine increased HO-1 mRNA and protein expression concentration- and time-dependently. In addition, berberine-induced HO-1 expression was attenuated by PI 3-kinase (phosphatidylinositol 3-kinase) inhibitors LY294002 and wortmannin, and an AKT inhibitor. Treatment of astrocytes with berberine also induced p85 (PI 3-kinase) and AKT phospholation, and increased AKT kinase activity. Berberine also increased NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and increased Nrf2-DNA binding activity as determined by the EMSA (electrophoretic mobility shift assay). Moreover, berberine-induced increase of Nrf2-DNA binding activity was reduced by PI 3-kinase and AKT inhibitors. Berberine-increased HO-1-luciferase activity was also inhibited by co-transfection with dominant-negative (DN) mutants of p85 and AKT. Moreover, berberine-mediated increase of HO-1 transcriptional activity and protein expression were reduced by transfection with siRNA againt Nrf2. These findings suggest that berberine-increased HO-I expression is mediated by Nrf2 activation through the PI 3-kinase/AKT pathway in astrocytes. Thus, berberine may be useful as a therapeutic agent for the treatment of neuroinflammation-associated disorders. (C) 2011 Elsevier B.V. All rights reserved

    Effects of sugar cane extract on pseudorabies virus challenge of pigs

    No full text
    This experiment aimed to evaluate the efficacy of sugar cane extract (SCE) on the modulation of porcine immunity against pseudorabies virus (PrV) infection. Twelve-week-old experimental pigs were fed with SCE (500 mg/kg of body weight per day) for 3 days and challenged with PrV (2 x 10(5) TCID50) on the second day. Pigs that were only challenged with PrV and without SCE-treatment served as controls. The leukocyte functional assays were performed on the 7th and 14th day post-PrV challenge. Our results showed a significant enhancement (P < 0.05) of natural killer cytotoxicity, lymphocyte proliferation, phagocytic function of monocytes, and interferon-gamma (IFN-gamma) production of CD4(+) and gamma delta T cells in the SCE-treated pigs compared with the controls. In addition, SCE administration reduced the severity of clinical signs and brain lesion in the course of disease in PrV-challenged pigs. SCE-treated pigs showed a 12% growth enhancement compared with untreated controls. SCE administration had an immunostimulating effect on porcine immunity that may subsequently enhance protective activities against PrV infection which may be extensively applied in field for the prevention of infections

    Coalition Structure Generation with GRASP

    No full text
    The coalition structure generation problem represents an active research area in multi-agent systems. A coalition structure is defined as a partition of the agents involved in a system into disjoint coalitions. The problem of finding the optimal coalition structure is NP-complete. In order to find the optimal solution in a combinatorial optimization problem it is theoretically possible to enumerate the solutions and evaluate each. But this approach is infeasible since the number of solutions often grows exponentially with the size of the problem. In this paper we present a greedy adaptive search procedure (GRASP) to efficiently search the space of coalition structures in order to find an optimal one
    corecore